Computes the L1 norm of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields 0.
ReduceL2
Computes the L2 norm of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields 0.
ReduceLogSum
Computes the log sum of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields minus infinity (if supported by the datatype) or undefined otherwise.
ReduceLogSumExp
Computes the log sum exponent of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields minus infinity (if supported by the datatype) or undefined otherwise.
ReduceMax
Computes the max of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields minus infinity (if supported by the datatype) or the minimum value of the data type otherwise.If the input data type is Boolean, the comparison should consider False < True.
ReduceMean
Computes the mean of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields undefined.
ReduceMin
Computes the min of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields plus infinity (if supported by the datatype) or the maximum value of the data type otherwise.If the input data type is Boolean, the comparison should consider False < True.
ReduceProd
Computes the product of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields 1.
ReduceSum
Computes the sum of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields 0.
ReduceSumSquare
Computes the sum square of the input tensor’s elements along the provided axes. The resulting tensor has the same rank as the input if keepdims equals 1. If keepdims equals 0, then the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are valid. Reduction over an empty set of values yields 0.
Description
Extend existing Reduce_Sum func to all 10 Reduce-series ops i.e ReduceMean def: https://onnx.ai/onnx/operators/onnx__ReduceMean.html
Motivation and Context
https://github.com/microsoft/onnxruntime/issues/22662 This ReduceMean op is not supported by current script