Closed Kevinlee49 closed 8 months ago
Hi @dans-msft @Adarsh-Ramanathan , could you help to take a look of this issue?
@Kevinlee49, can you share your flow yaml (or, ideally, a yaml that is a minimal repro of this issue)?
@Adarsh-Ramanathan
environment:
python_requirements_txt: requirements.txt
inputs:
question:
type: string
is_chat_input: false
outputs:
output:
type: string
reference: ${answer_the_question_with_context.output}
evaluation_only: false
is_chat_output: true
nodes:
- name: rephrase_and_classify_input
use_variants: true
- name: answer_the_question_with_context
type: llm
source:
type: code
path: answer_the_question_with_context.jinja2
inputs:
deployment_name: gpt-35-turbo-16k-v0613
temperature: 0
top_p: 1
max_tokens: 1000
response_format:
type: text
presence_penalty: 0
frequency_penalty: 0
final_prompt: ${final_prompt.output}
provider: AzureOpenAI
connection: test-connection
api: chat
module: promptflow.tools.aoai
aggregation: false
use_variants: false
- name: input_classify_and_rephrase
type: prompt
source:
type: code
path: input_classify_and_rephrase.jinja2
inputs:
question: ${inputs.question}
use_variants: false
- name: semantic_search
type: python
source:
type: package
tool: promptflow_vectordb.tool.common_index_lookup.search
inputs:
mlindex_content: >
embeddings:
api_base: https://
api_type: azure
api_version: 2023-07-01-preview
batch_size: '16'
connection:
id: /subscriptions/
connection_type: workspace_connection
deployment: text-embedding-ada-002
dimension: 1536
file_format_version: '2'
kind: open_ai
model: text-embedding-ada-002
schema_version: '2'
index:
api_version: 2023-07-01-preview
connection:
id: /subscriptions/
connection_type: workspace_connection
endpoint: https://
engine: azure-sdk
field_mapping:
content: content
embedding: contentVector
filename: filepath
metadata: meta_json_string
title: title
url: url
index: pf-rpindex
kind: acs
semantic_configuration_name: azureml-default
queries: ${rephrase_and_classify_input.output}
query_type: Semantic
top_k: 3
use_variants: false
- name: hybrid_search
type: python
source:
type: package
tool: promptflow_vectordb.tool.common_index_lookup.search
inputs:
mlindex_content: >
embeddings:
api_base: https://
api_type: azure
api_version: 2023-07-01-preview
batch_size: '16'
connection:
id: /subscriptions/
connection_type: workspace_connection
deployment: text-embedding-ada-002
dimension: 1536
file_format_version: '2'
kind: open_ai
model: text-embedding-ada-002
schema_version: '2'
index:
api_version: 2023-07-01-preview
connection:
id: /subscriptions/
connection_type: workspace_connection
endpoint: https://
engine: azure-sdk
field_mapping:
content: content
embedding: contentVector
filename: filepath
metadata: meta_json_string
title: title
url: url
index: pf-rpindex
kind: acs
semantic_configuration_name: azureml-default
queries: ${rephrase_and_classify_input.output}
query_type: Hybrid (vector + keyword)
top_k: 3
use_variants: false
- name: generate_context
type: python
source:
type: code
path: generate_context.py
inputs:
hybrid_search_output: ${hybrid_search.output}
semantic_search_output: ${semantic_search.output}
use_variants: false
- name: final_prompt
type: prompt
source:
type: code
path: final_prompt.jinja2
inputs:
context: ${generate_context.output}
question: ${rephrase_and_classify_input.output}
use_variants: false
node_variants:
rephrase_and_classify_input:
default_variant_id: variant_0
variants:
variant_0:
node:
type: llm
source:
type: code
path: input_classify_and_rephrase.jinja2
inputs:
deployment_name: gpt-35-turbo-16k-v0613
temperature: 0.9
top_p: 1
max_tokens: 4096
response_format:
type: text
presence_penalty: 0
frequency_penalty: 0
question: ${input_classify_and_rephrase.output}
provider: AzureOpenAI
connection: test-connection
api: chat
module: promptflow.tools.aoai
variant_1:
node:
type: llm
source:
type: code
path: rephrase_and_classify_input__variant_1.jinja2
inputs:
deployment_name: gpt-35-turbo-16k-v0613
temperature: 0.9
top_p: 1
max_tokens: 4096
response_format:
type: text
presence_penalty: 0
frequency_penalty: 0
question: ${python_query_analyze_and_rephrase.output}
provider: AzureOpenAI
connection: test-connection
api: chat
module: promptflow.tools.aoai
@Adarsh-Ramanathan Hello, did you solve this issue? I'm still waiting your feedback..!
Have synced with the user. Since this issue has been included in this one: #2046, we will close it and link it to issue #2046.
I want to send the output of LLM that represents the input query to the hybrid search and semantic search(these two nodes are index lookup tools) at the same time. But the error 'vector.fields' occurred. Do you know how to solve this problem?
I also aim to unify the results of both searches into one output. The screenshot below shows the basic structure of my workflow.