Closed manuelgitgomes closed 2 years ago
Hi @manuelgitgomes ,
let's say you have Nx points in scan x, and No points in scan o.
scan x: x x x xxxxx x x x
scan o: o o o oooooo o o o
Now let's assume we the goal is to calibrate x in o, then you have to search for each x the closest o, and the residual corresponding to that x in the minimum distance between x and all os.
This way you have only Nx residuals and it works very fast.
Does it make sense?
for each x the closest o would mean
for each x, compute the distance to all os and take the minimum.
This is common in the ICP algorithm https://en.wikipedia.org/wiki/Iterative_closest_point
It makes sense! I will try it ASAP. Thank you!
It worked a lot better. Still some problem, will be better defined in #65. This issue is now closed.
OK, great. Bear in mind that you may have problems with the association, unless the initial value of the transformation is very close to the real solution.
This is a common thing with the ICP algorithm, which is know to often fall into local minima unless a good initialization is provided.
Exactly, we are having that problem right now.
Good evening. When trying to calibrate two 2D LIDAR sensors with each other, there is a residuals between each point captured, correct? Because, if so, I have 541 points. To calibrate between each point, residuals are 541², equaling 292681 residuals, which might be too computationally intensive for my machine to handle. Am I formulating the problem correctly and simply need to wait for it to process all, or is there and error in my formulation?