Closed wenwenyu closed 6 years ago
modify system information : TensorFlow version: 1.6
Hi I modify train_batch_size = 8 val_batch_size = 8 and shuffle_buffer_size = 32 then it works.
ResourceExhaustedError means that you should decrease the batch size. But you found that out already. I'll close this issue for now.
Hi,
I'm sorry about asking this, but I have no idea to solve this problem when run train.py. the following is error message:
System information
Error Message:
Found GPU! Using channels first as default image data format. Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1361, in _do_call return fn(*args) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1340, in _run_fn target_list, status, run_metadata) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 516, in exit c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[32,256,35,35] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[Node: mixed0/concat = ConcatV2[N=4, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](activation_5/Relu, activation_7/Relu, activation_10/Relu, activation_11/Relu, gradients/global_average_pooling2d/Mean_grad/Maximum_1/y)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File ".\train.py", line 235, in
[global_step, mean_xentropy, train_op, update_brier])
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 905, in run
run_metadata_ptr)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1137, in _run
feed_dict_tensor, options, run_metadata)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1355, in _do_run
options, run_metadata)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1374, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[32,256,35,35] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[Node: mixed0/concat = ConcatV2[N=4, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](activation_5/Relu, activation_7/Relu, activation_10/Relu, activation_11/Relu, gradients/global_average_pooling2d/Mean_grad/Maximum_1/y)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Caused by op 'mixed0/concat', defined at: File ".\train.py", line 133, in
include_top=False, weights='imagenet', pooling='avg', input_tensor=x)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\applications\inception_v3.py", line 216, in InceptionV3
name='mixed0')
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\layers\merge.py", line 665, in concatenate
return Concatenate(axis=axis, kwargs)(inputs)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\engine\topology.py", line 258, in call
output = super(Layer, self).call(inputs, kwargs)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\layers\base.py", line 696, in call
outputs = self.call(inputs, *args, **kwargs)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\layers\merge.py", line 174, in call
return self._merge_function(inputs)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\layers\merge.py", line 380, in _merge_function
return K.concatenate(inputs, axis=self.axis)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\keras_impl\keras\backend.py", line 2083, in concatenate
return array_ops.concat([to_dense(x) for x in tensors], axis)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1175, in concat
return gen_array_ops._concat_v2(values=values, axis=axis, name=name)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 777, in _concat_v2
"ConcatV2", values=values, axis=axis, name=name)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3271, in create_op
op_def=op_def)
File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1650, in init
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[32,256,35,35] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[Node: mixed0/concat = ConcatV2[N=4, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](activation_5/Relu, activation_7/Relu, activation_10/Relu, activation_11/Relu, gradients/global_average_pooling2d/Mean_grad/Maximum_1/y)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.