minaskar / zeus

⚡️ zeus: Lightning Fast MCMC ⚡️
https://zeus-mcmc.readthedocs.io/
GNU General Public License v3.0
227 stars 33 forks source link

JAX implementation of zeus #35

Open amifalk opened 10 months ago

amifalk commented 10 months ago

Greetings!

I've ported a subset of zeus functionality to the NumPyro project under the sampler name ESS.

(For the uninitiated, NumPyro uses JAX, a library with an interface to numpy and additional features like JIT compiling and GPU support, in the backend. The upshot is that if you're using currently using zeus, switching to NumPyro may give you a dramatic inference speedup!)

I've tried my best to match the existing API. You can use either the NumPyro model specification language

import jax
import jax.numpy as jnp

import numpyro
from numpyro.infer import MCMC, ESS
import numpyro.distributions as dist

n_dim, num_chains = 5, 100
mu, sigma = jnp.zeros(n_dim), jnp.ones(n_dim)

def model(mu, sigma):
    with numpyro.plate('n_dim', n_dim):
        numpyro.sample("x", dist.Normal(mu, sigma))

kernel = ESS(model, moves={ESS.DifferentialMove() : 1})

mcmc = MCMC(kernel, 
            num_warmup=1000,
            num_samples=2000, 
            num_chains=num_chains, 
            chain_method='vectorized')

mcmc.run(jax.random.PRNGKey(0), mu, sigma)
mcmc.print_summary()

or provide your own potential function.

def potential_fn(z):
    return 0.5 * jnp.sum(((z - mu) / sigma) ** 2)

kernel = ESS(potential_fn=potential_fn,
             moves={ESS.DifferentialMove() : 1})

mcmc = MCMC(kernel, 
            num_warmup=1000,
            num_samples=2000, 
            num_chains=num_chains, 
            chain_method='vectorized')

init_params = jax.random.normal(jax.random.PRNGKey(0), 
                                (num_chains, n_dim))

mcmc.run(jax.random.PRNGKey(1), mu, sigma, init_params=init_params)
mcmc.print_summary()

Hope this is helpful to some folks!