Open wy353208214 opened 1 year ago
{ "lr": 0.1, "milestones": [10, 15, 22], "gamma": 0.1, "epochs": 25, "momentum": 0.9, "batch_size": 1024, "num_classes": 3, "input_channel": 3, "embedding_size": 128, "train_root_path": "./datasets/rgb_image", "snapshot_dir_path": "./saved_logs/snapshot", "log_path": "./saved_logs/jobs/Anti_Spoofing_2.7_80x80/Oct18_11-21-58 ", "board_loss_every": 10, "save_every": 30, "devices": [0], "patch_info": "2.7_80x80", "input_size": [80, 80], "kernel_size": [5, 5], "device": "cpu", "ft_height": 10, "ft_width": 10, "model_path": "./saved_logs/snapshot/Anti_Spoofing_2.7_80x80", "job_name": "Anti_Spoofing_2.7_80x80" }
生成的模型文件:
Traceback (most recent call last): File "/Users/steven/Dev_Project/Python/Silent-Face-Anti-Spoofing/test.py", line 111, in <module> test(args.image_name, args.model_dir, args.device_id) File "/Users/steven/Dev_Project/Python/Silent-Face-Anti-Spoofing/test.py", line 61, in test prediction += model_test.predict(img, os.path.join(model_dir, model_name)) File "/Users/steven/Dev_Project/Python/Silent-Face-Anti-Spoofing/src/anti_spoof_predict.py", line 88, in predict self._load_model(model_path) File "/Users/steven/Dev_Project/Python/Silent-Face-Anti-Spoofing/src/anti_spoof_predict.py", line 77, in _load_model self.model.load_state_dict(new_state_dict) File "/usr/local/lib/python3.9/site-packages/torch/nn/modules/module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for MiniFASNet: Missing key(s) in state_dict: "conv1.conv.weight", "conv1.bn.weight", "conv1.bn.bias", "conv1.bn.running_mean", "conv1.bn.running_var", "conv1.prelu.weight", "conv2_dw.conv.weight", "conv2_dw.bn.weight", "conv2_dw.bn.bias", "conv2_dw.bn.running_mean", "conv2_dw.bn.running_var", "conv2_dw.prelu.weight", "conv_23.conv.conv.weight", "conv_23.conv.bn.weight", "conv_23.conv.bn.bias", "conv_23.conv.bn.running_mean", "conv_23.conv.bn.running_var", "conv_23.conv.prelu.weight", "conv_23.conv_dw.conv.weight", "conv_23.conv_dw.bn.weight", "conv_23.conv_dw.bn.bias", "conv_23.conv_dw.bn.running_mean", "conv_23.conv_dw.bn.running_var", "conv_23.conv_dw.prelu.weight", "conv_23.project.conv.weight", "conv_23.project.bn.weight", "conv_23.project.bn.bias", "conv_23.project.bn.running_mean", "conv_23.project.bn.running_var", "conv_3.model.0.conv.conv.weight", "conv_3.model.0.conv.bn.weight", "conv_3.model.0.conv.bn.bias", "conv_3.model.0.conv.bn.running_mean", "conv_3.model.0.conv.bn.running_var", "conv_3.model.0.conv.prelu.weight", "conv_3.model.0.conv_dw.conv.weight", "conv_3.model.0.conv_dw.bn.weight", "conv_3.model.0.conv_dw.bn.bias", "conv_3.model.0.conv_dw.bn.running_mean", "conv_3.model.0.conv_dw.bn.running_var", "conv_3.model.0.conv_dw.prelu.weight",
参考这里
训练后,生成的多个model,选用哪个?
生成的模型文件: