Traceback (most recent call last):
File "/home/user/anaconda3/bin/nequip-train", line 8, in
sys.exit(main())
^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/scripts/train.py", line 115, in main
trainer.train()
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 784, in train
self.epoch_step()
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 919, in epoch_step
self.batch_step(
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 814, in batch_step
out = self.model(data_for_loss)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_graph_model.py", line 112, in forward
data = self.model(new_data)
^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_rescale.py", line 144, in forward
data = self.model(data)
^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_grad_output.py", line 85, in forward
data = self.func(data)
^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_graph_mixin.py", line 366, in forward
input = module(input)
^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/allegro/nn/_allegro.py", line 612, in forward
new_latents = cutoff_coeffs[active_edges].unsqueeze(-1) new_latents
RuntimeError: The size of tensor a (18294) must match the size of tensor b (18293) at non-singleton dimension 0
********
Can you please suggest me what's wrong in my installation and how to fix this issue?
Many thanks in advance and best wishes,
Giuseppe Cassone
Dear Developers,
I'm a new Allegro user. I'm just trying to run the simple input shown below
general
root: results/water-tutorial run_name: water seed: 42 dataset_seed: 42 append: true default_dtype: float32
-- network --
model_builders:
the typical model builders from
nequip
can still be used:cutoffs
r_max: 4.5 avg_num_neighbors: auto
radial basis
BesselBasis_trainable: true PolynomialCutoff_p: 48
symmetry
l_max: 2 parity: o3_full
Allegro layers:
num_layers: 2 env_embed_multiplicity: 8 embed_initial_edge: true
two_body_latent_mlp_latent_dimensions: [32, 64, 128] two_body_latent_mlp_nonlinearity: silu two_body_latent_mlp_initialization: uniform
latent_mlp_latent_dimensions: [128] latent_mlp_nonlinearity: silu latent_mlp_initialization: uniform latent_resnet: true
env_embed_mlp_latent_dimensions: [] env_embed_mlp_nonlinearity: null env_embed_mlp_initialization: uniform
- end allegro layers -
Final MLP to go from Allegro latent space to edge energies:
edge_eng_mlp_latent_dimensions: [32] edge_eng_mlp_nonlinearity: null edge_eng_mlp_initialization: uniform
include_keys:
-- data --
dataset: ase
dataset_file_name: /content/cp2k/colab/AIMD_data/conc_wat_pos_frc.extxyz # path to data set file ase_args: format: extxyz
A mapping of chemical species to type indexes is necessary if the dataset is provided with atomic numbers instead of type indexes.
chemical_symbols:
logging
wandb: false
wandb_project: allegro-water-tutorial
verbose: info log_batch_freq: 10
training
n_train: 1000 n_val: 100 batch_size: 5 max_epochs: 100 learning_rate: 0.002 train_val_split: random shuffle: true metrics_key: validation_loss
use an exponential moving average of the weights
use_ema: true ema_decay: 0.99 ema_use_num_updates: true
loss function
loss_coeffs: forces: 1. total_energy:
optimizer
optimizer_name: Adam optimizer_params: amsgrad: false betas: !!python/tuple
metrics_components:
lr scheduler, drop lr if no improvement for 50 epochs
lr_scheduler_name: ReduceLROnPlateau lr_scheduler_patience: 50 lr_scheduler_factor: 0.5
early_stopping_lower_bounds: LR: 1.0e-5
early_stopping_patiences: validation_loss: 100
but at the 10th epoch I get the following error:
Traceback (most recent call last): File "/home/user/anaconda3/bin/nequip-train", line 8, in
sys.exit(main())
^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/scripts/train.py", line 115, in main
trainer.train()
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 784, in train
self.epoch_step()
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 919, in epoch_step
self.batch_step(
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/train/trainer.py", line 814, in batch_step
out = self.model(data_for_loss)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_graph_model.py", line 112, in forward
data = self.model(new_data)
^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_rescale.py", line 144, in forward
data = self.model(data)
^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_grad_output.py", line 85, in forward
data = self.func(data)
^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/nequip/nn/_graph_mixin.py", line 366, in forward
input = module(input)
^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/anaconda3/lib/python3.12/site-packages/allegro/nn/_allegro.py", line 612, in forward
new_latents = cutoff_coeffs[active_edges].unsqueeze(-1) new_latents