I've encountered an issue while training SPVNAS on the SemanticKITTI dataset. It seems like there is an AttributeError arising from the RandomDepth module, specifically saying that the 'RandomDepth' object has no attribute 'depth'.
Here's the stack trace for the error:
[2023-10-13 11:49:18.602] /home/liury21/.conda/envs/openmmlab/bin/python /home/data/liury21/spvnas/train.py configs/semantic_kitti/spvnas/default.yaml --distributed False
[2023-10-13 11:49:18.603] Experiment started: "runs/run-08570cf6-5c4d034b".
workers_per_gpu: 8
distributed: False
amp_enabled: True
data:
num_classes: 19
ignore_label: 255
training_size: 19132
macro_depth_constraint: 1
train:
seed: 1588147245
deterministic: False
dataset:
name: semantic_kitti
root: /home/data/liury21/dataset/OpenDataLab_SemanticKITTI/raw/dataset/sequences
num_points: 80000
voxel_size: 0.05
num_epochs: 15
batch_size: 2
criterion:
name: cross_entropy
ignore_index: 255
optimizer:
name: sgd
lr: 0.24
weight_decay: 0.0001
momentum: 0.9
nesterov: True
scheduler:
name: cosine_warmup
model:
name: spvnas
[2023-10-13 11:49:21.154] Epoch 1/15 started.
0% 0/9565 [00:00<?, ?it/s]/home/data/liury21/spvnas/core/modules/dynamic_sparseop.py:84: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
return spf.conv3d(inputs, cur_kernel, self.ks, None, stride=self.s, dilation=self.d, transposed=self.t)
Traceback (most recent call last):
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/main.py", line 39, in
cli.main()
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 430, in main
run()
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 284, in run_file
runpy.run_path(target, run_name="main")
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 322, in run_path
pkg_name=pkg_name, script_name=fname)
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 136, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 124, in _run_code
exec(code, run_globals)
File "/home/data/liury21/spvnas/train.py", line 111, in
main()
File "/home/data/liury21/spvnas/train.py", line 106, in main
Saver(),
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 39, in train_with_defaults
callbacks=callbacks)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 79, in train
output_dict = self.run_step(feed_dict)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 125, in run_step
output_dict = self._run_step(feed_dict)
File "/home/data/liury21/spvnas/core/trainers.py", line 50, in _run_step
outputs = self.model(inputs)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, kwargs)
File "/home/data/liury21/spvnas/core/models/semantic_kitti/spvnas.py", line 320, in forward
x1 = self.downsample0
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, *kwargs)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/container.py", line 139, in forward
input = module(input)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(input, kwargs)
File "/home/data/liury21/spvnas/core/modules/modules.py", line 84, in forward
for k in range(self.depth):
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1208, in getattr
type(self).name__, name))
AttributeError: 'RandomDepth' object has no attribute 'depth'
Hello,
I've encountered an issue while training SPVNAS on the SemanticKITTI dataset. It seems like there is an AttributeError arising from the RandomDepth module, specifically saying that the 'RandomDepth' object has no attribute 'depth'.
Here's the stack trace for the error:
[2023-10-13 11:49:18.602] /home/liury21/.conda/envs/openmmlab/bin/python /home/data/liury21/spvnas/train.py configs/semantic_kitti/spvnas/default.yaml --distributed False [2023-10-13 11:49:18.603] Experiment started: "runs/run-08570cf6-5c4d034b". workers_per_gpu: 8 distributed: False amp_enabled: True data: num_classes: 19 ignore_label: 255 training_size: 19132 macro_depth_constraint: 1 train: seed: 1588147245 deterministic: False dataset: name: semantic_kitti root: /home/data/liury21/dataset/OpenDataLab_SemanticKITTI/raw/dataset/sequences num_points: 80000 voxel_size: 0.05 num_epochs: 15 batch_size: 2 criterion: name: cross_entropy ignore_index: 255 optimizer: name: sgd lr: 0.24 weight_decay: 0.0001 momentum: 0.9 nesterov: True scheduler: name: cosine_warmup model: name: spvnas [2023-10-13 11:49:21.154] Epoch 1/15 started. 0% 0/9565 [00:00<?, ?it/s]/home/data/liury21/spvnas/core/modules/dynamic_sparseop.py:84: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). return spf.conv3d(inputs, cur_kernel, self.ks, None, stride=self.s, dilation=self.d, transposed=self.t) Traceback (most recent call last): File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/main.py", line 39, in
cli.main()
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 430, in main
run()
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 284, in run_file
runpy.run_path(target, run_name=" main")
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 322, in run_path
pkg_name=pkg_name, script_name=fname)
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 136, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "/home/liury21/.vscode-server/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 124, in _run_code
exec(code, run_globals)
File "/home/data/liury21/spvnas/train.py", line 111, in
main()
File "/home/data/liury21/spvnas/train.py", line 106, in main
Saver(),
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 39, in train_with_defaults
callbacks=callbacks)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 79, in train
output_dict = self.run_step(feed_dict)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torchpack/train/trainer.py", line 125, in run_step
output_dict = self._run_step(feed_dict)
File "/home/data/liury21/spvnas/core/trainers.py", line 50, in _run_step
outputs = self.model(inputs)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, kwargs)
File "/home/data/liury21/spvnas/core/models/semantic_kitti/spvnas.py", line 320, in forward
x1 = self.downsample0
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, *kwargs)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/container.py", line 139, in forward
input = module(input)
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(input, kwargs)
File "/home/data/liury21/spvnas/core/modules/modules.py", line 84, in forward
for k in range(self.depth):
File "/home/liury21/.conda/envs/openmmlab/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1208, in getattr
type(self).name__, name))
AttributeError: 'RandomDepth' object has no attribute 'depth'