Closed MooreManor closed 2 years ago
I checked that their h36m and mpi-inf-3dhp fits are worse than NeuralAnnot's fits.
@mks0601 Is the comparision conducted through indirect 3d annotation error or visualization?
I checked the direct 3D annotation error
@mks0601 Is it possible to give the detailed number of the direct 3D annotation error between the neuralAnnot and the original one? Thanks!
Sorry I don't remember exact numbers.. But I remember there was some meaningful gap
@mks0601 Then how about the indirect 3d annotation error if you have done related experiments? Besides, do you try to compare the quality of annots with the latest CLIFF on ITW dataset?
For both, I haven't done related experiments. Sorry about this
@mks0601 Thanks for your patient and in-time reply! I am clear now :) 👍
@mks0601 Hello! NeuralAnnot is a wonderful work. I have a question about the experiment.
For SPIN used 3D dataset labels, that is, h36m mosh labels and mpi-inf-3dhp_mview_fits, will substituting NeuralAnnot pseudo labels with them raise the score (i.e. indirect 3d annotation error) while keeping ITW datasets labels with the same 2D GT annots without GT SMPL supervision?