I tried to reproduce ICDAR 2015 result from paper.
But I can't get the result from paper with pre-trained weights.
I'm not changing any code. download dataset and pre-trained weights.
train with pre-trained weight. but I got loss almost 30.0~
it looks like not converge.
below is my log.
[07/25 14:21:07] detectron2 INFO: Rank of current process: 0. World size: 8
[07/25 14:21:11] detectron2 INFO: Environment info:
Hello, Thanks for your amazing work :)
I tried to reproduce ICDAR 2015 result from paper. But I can't get the result from paper with pre-trained weights.
I'm not changing any code. download dataset and pre-trained weights. train with pre-trained weight. but I got loss almost 30.0~ it looks like not converge.
below is my log.
[07/25 14:21:07] detectron2 INFO: Rank of current process: 0. World size: 8 [07/25 14:21:11] detectron2 INFO: Environment info:
sys.platform linux Python 3.8.10 (default, Jun 22 2022, 20:18:18) [GCC 9.4.0] numpy 1.23.4 detectron2 0.6 @/usr/local/lib/python3.8/dist-packages/detectron2 Compiler GCC 9.4 CUDA compiler CUDA 11.3 detectron2 arch flags 8.6 DETECTRON2_ENV_MODULE
PyTorch 1.12.1+cu113 @/usr/local/lib/python3.8/dist-packages/torch
PyTorch debug build False
torch._C._GLIBCXX_USE_CXX11_ABI False
GPU available Yes
GPU 0,1,2,3,4,5,6,7 Tesla T4 (arch=7.5)
Driver version 450.80.02
CUDA_HOME /usr/local/cuda
Pillow 9.2.0
torchvision 0.13.1+cu113 @/usr/local/lib/python3.8/dist-packages/torchvision
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
fvcore 0.1.5.post20221221
iopath 0.1.9
cv2 4.1.2
PyTorch built with:
[07/25 14:21:11] detectron2 INFO: Command line arguments: Namespace(config_file='configs/TESTR/ICDAR15/TESTR_R_50_Polygon.yaml', dist_url='tcp://127.0.0.1:59588', eval_only=False, machine_rank=0, num_gpus=8, num_machines=1, opts=[], resume=False) [07/25 14:21:11] detectron2 INFO: Contents of args.config_file=configs/TESTR/ICDAR15/TESTR_R_50_Polygon.yaml: BASE: "Base-ICDAR15-Polygon.yaml" MODEL: WEIGHTS: "weights/TESTR/pretrain_testr_R_50_polygon.pth" RESNETS: DEPTH: 50 TRANSFORMER: NUM_FEATURE_LEVELS: 4 INFERENCE_TH_TEST: 0.3 ENC_LAYERS: 6 DEC_LAYERS: 6 DIM_FEEDFORWARD: 1024 HIDDEN_DIM: 256 DROPOUT: 0.1 NHEADS: 8 NUM_QUERIES: 100 ENC_N_POINTS: 4 DEC_N_POINTS: 4 SOLVER: IMS_PER_BATCH: 8 BASE_LR: 1e-5 LR_BACKBONE: 1e-6 WARMUP_ITERS: 0
STEPS: (200000,)
MAX_ITER: 200000 CHECKPOINT_PERIOD: 10000 TEST: EVAL_PERIOD: 10000 OUTPUT_DIR: "output/TESTR/icdar15/TESTR_R_50_Polygon"
[07/25 14:21:11] detectron2 INFO: Running with full config: CUDNN_BENCHMARK: false DATALOADER: ASPECT_RATIO_GROUPING: true FILTER_EMPTY_ANNOTATIONS: true NUM_WORKERS: 4 REPEAT_THRESHOLD: 0.0 SAMPLER_TRAIN: TrainingSampler DATASETS: PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 PROPOSAL_FILES_TEST: [] PROPOSAL_FILES_TRAIN: [] TEST:
[07/25 14:21:13] d2.data.build INFO: Using training sampler TrainingSampler [07/25 14:21:13] d2.data.common INFO: Serializing the dataset using: <class 'detectron2.data.common._TorchSerializedList'> [07/25 14:21:13] d2.data.common INFO: Serializing 979 elements to byte tensors and concatenating them all ... [07/25 14:21:13] d2.data.common INFO: Serialized dataset takes 1.64 MiB [07/25 14:21:13] d2.checkpoint.detection_checkpoint INFO: [DetectionCheckpointer] Loading from weights/TESTR/pretrain_testr_R_50_polygon.pth ... [07/25 14:21:13] fvcore.common.checkpoint INFO: [Checkpointer] Loading from weights/TESTR/pretrain_testr_R_50_polygon.pth ... [07/25 14:21:14] adet.trainer INFO: Starting training from iteration 0 [07/25 17:20:06] d2.utils.events INFO: eta: 2 days, 13:01:22 iter: 9359 total_loss: 44.08 loss_ce: 0.783 loss_ctrl_points: 2.31 loss_texts: 3.764 loss_ce_0: 0.8143 loss_ctrl_points_0: 2.423 loss_texts_0: 3.801 loss_ce_1: 0.8142 loss_ctrl_points_1: 2.4 loss_texts_1: 3.759 loss_ce_2: 0.8032 loss_ctrl_points_2: 2.351 loss_texts_2: 3.756 loss_ce_3: 0.7866 loss_ctrl_points_3: 2.334 loss_texts_3: 3.758 loss_ce_4: 0.7786 loss_ctrl_points_4: 2.311 loss_texts_4: 3.77 loss_ce_enc: 0.8066 loss_bbox_enc: 0.3008 loss_giou_enc: 0.7569 time: 1.1431 last_time: 0.8115 data_time: 0.0088 last_data_time: 0.0066 lr: 1e-05 max_mem: 12183M [07/25 17:20:28] d2.utils.events INFO: eta: 2 days, 13:02:11 iter: 9379 total_loss: 42.63 loss_ce: 0.7653 loss_ctrl_points: 2.407 loss_texts: 3.758 loss_ce_0: 0.8062 loss_ctrl_points_0: 2.635 loss_texts_0: 3.792 loss_ce_1: 0.7863 loss_ctrl_points_1: 2.568 loss_texts_1: 3.736 loss_ce_2: 0.7788 loss_ctrl_points_2: 2.537 loss_texts_2: 3.737 loss_ce_3: 0.77 loss_ctrl_points_3: 2.508 loss_texts_3: 3.748 loss_ce_4: 0.7641 loss_ctrl_points_4: 2.456 loss_texts_4: 3.748 loss_ce_enc: 0.7962 loss_bbox_enc: 0.2918 loss_giou_enc: 0.73 time: 1.1431 last_time: 0.9134 data_time: 0.0084 last_data_time: 0.0075 lr: 1e-05 max_mem: 12183M [07/25 17:20:51] d2.utils.events INFO: eta: 2 days, 13:05:45 iter: 9399 total_loss: 44.09 loss_ce: 0.7944 loss_ctrl_points: 2.32 loss_texts: 3.633 loss_ce_0: 0.8154 loss_ctrl_points_0: 2.634 loss_texts_0: 3.668 loss_ce_1: 0.802 loss_ctrl_points_1: 2.506 loss_texts_1: 3.633 loss_ce_2: 0.8023 loss_ctrl_points_2: 2.369 loss_texts_2: 3.626 loss_ce_3: 0.7987 loss_ctrl_points_3: 2.281 loss_texts_3: 3.624 loss_ce_4: 0.7966 loss_ctrl_points_4: 2.309 loss_texts_4: 3.62 loss_ce_enc: 0.8003 loss_bbox_enc: 0.2937 loss_giou_enc: 0.7454 time: 1.1431 last_time: 1.1894 data_time: 0.0081 last_datatime: 0.0227 lr: 1e-05 max