Closed sebffischer closed 2 months ago
library(mlr3verse) #> Loading required package: mlr3 task = tsk("german_credit") graph = po("learner_cv", learner = lrn("classif.rpart", predict_type = "prob")) %>>% po("tunethreshold", measure = msr("classif.acc"), optimizer = "random_search") learner1 = as_learner(graph) learner2 = lrn("classif.rpart") design = benchmark_grid( task, list(learner1, learner2), rsmp("holdout") ) bmr = benchmark(design) #> INFO [15:12:56.038] [mlr3] Running benchmark with 2 resampling iterations #> INFO [15:12:56.225] [mlr3] Applying learner 'classif.rpart.tunethreshold' on task 'german_credit' (iter 1/1) #> INFO [15:12:56.430] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/3) #> INFO [15:12:56.645] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 2/3) #> INFO [15:12:56.717] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 3/3) #> INFO [15:12:58.398] [mlr3] Applying learner 'classif.rpart' on task 'german_credit' (iter 1/1) #> INFO [15:12:58.459] [mlr3] Finished benchmark bmr$score(msr("classif.acc")) #> uhash nr task task_id #> 1: 139dd95b-115b-4e5d-973a-51f43eaade6a 1 <TaskClassif[50]> german_credit #> 2: f6830c7e-4df1-412b-89d0-9b76a8938c4e 2 <TaskClassif[50]> german_credit #> learner learner_id #> 1: <GraphLearner[38]> classif.rpart.tunethreshold #> 2: <LearnerClassifRpart[38]> classif.rpart #> resampling resampling_id iteration prediction #> 1: <ResamplingHoldout[20]> holdout 1 <PredictionClassif[20]> #> 2: <ResamplingHoldout[20]> holdout 1 <PredictionClassif[20]> #> classif.acc #> 1: 0.3093093 #> 2: 0.7477477
Created on 2022-08-02 by the reprex package (v2.0.1)
holy cow
Created on 2022-08-02 by the reprex package (v2.0.1)