Closed TeaWhiteBro closed 8 months ago
Thank you for your wonderful work! After you released your config file, I ran the code using the config, and the final results ( Instance mIoU 85.62 ) were significantly lower than the results in the paper. At the same time, I used the pre-trained model you provided to run the test code, and the results ( Instance mIoU 86.10 ) were also slightly lower than those in the paper. I'm wondering if there's something wrong with my configuration? Here is my running log using pre-trained model you provided: launch mp with 1 GPUs, current rank: 0 [32m[12/03 17:04:48 ShapeNetPartNormal]: [0mdist_url: tcp://localhost:8888 dist_backend: nccl multiprocessing_distributed: False ngpus_per_node: 1 world_size: 1 launcher: mp local_rank: 0 use_gpu: True seed: 1500 epoch: 0 epochs: 150 ignore_index: None val_fn: validate deterministic: False sync_bn: False criterion_args: NAME: Poly1FocalLoss use_mask: False grad_norm_clip: 1 layer_decay: 0 step_per_update: 1 start_epoch: 1 sched_on_epoch: True wandb: use_wandb: False project: PointNext-ShapeNetPart tags: ['test'] name: ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo use_amp: False use_voting: False val_freq: 1 resume: False test: False finetune: False mode: test logname: None load_path: None print_freq: 10 save_freq: -1 root_dir: log/shapenetpart pretrained_path: ckpt/ShapeNetPart/ckpt_best.pth datatransforms: train: ['PointsToTensor', 'PointCloudScaling', 'PointCloudCenterAndNormalize', 'PointCloudJitter', 'ChromaticDropGPU'] val: ['PointsToTensor', 'PointCloudCenterAndNormalize'] vote: ['PointCloudScaling'] kwargs: jitter_sigma: 0.001 jitter_clip: 0.005 scale: [0.8, 1.2] gravity_dim: 1 angle: [0, 1.0, 0] feature_keys: pos,x,heights dataset: common: NAME: ShapeNetPartNormal data_root: ../data/shapenetcore_partanno_segmentation_benchmark_v0_normal use_normal: True num_points: 2048 train: split: trainval val: split: test presample: True num_classes: 50 shape_classes: 16 num_points: 2048 normal_channel: True batch_size: 8 dataloader: num_workers: 6 num_votes: 10 refine: True lr: 0.001 min_lr: None optimizer: NAME: adamw weight_decay: 0.0001 sched: multistep decay_epochs: [90, 120] decay_rate: 0.5 warmup_epochs: 0 model: NAME: BasePartSeg encoder_args: NAME: SPoTrEncoder blocks: [1, 1, 1, 1, 1] strides: [1, 2, 2, 2, 2] width: 128 in_channels: 7 sa_layers: 3 sa_use_res: True num_layers: 3 expansion: 4 radius: 0.1 radius_scaling: 2.5 nsample: 32 gamma: 16 num_gp: 16 tau_delta: 0.1 aggr_args: feature_type: dp_df reduction: max group_args: NAME: ballquery normalize_dp: True conv_args: order: conv-norm-act act_args: act: relu norm_args: norm: bn decoder_args: NAME: SPoTrPartDecoder cls_args: NAME: SegHead globals: max,avg num_classes: 50 in_channels: None norm_args: norm: bn rank: 0 distributed: False mp: False task_name: shapenetpart cfg_basename: spotr is_training: False run_name: ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo run_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo log_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo ckpt_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/checkpoint code_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/code log_path: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo.log cfg_path: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/cfg.yaml ../data/shapenetcore_partanno_segmentation_benchmark_v0_normal/processed/test_2048_fps.pkl load successfully
I obtained the same result on the pre-trained model.
Thank you for the interest to our paper.
We fixed the error of the code and you can get the correct result with the updated version.
Thank you for your wonderful work! After you released your config file, I ran the code using the config, and the final results ( Instance mIoU 85.62 ) were significantly lower than the results in the paper. At the same time, I used the pre-trained model you provided to run the test code, and the results ( Instance mIoU 86.10 ) were also slightly lower than those in the paper. I'm wondering if there's something wrong with my configuration? Here is my running log using pre-trained model you provided: launch mp with 1 GPUs, current rank: 0 [32m[12/03 17:04:48 ShapeNetPartNormal]: [0mdist_url: tcp://localhost:8888 dist_backend: nccl multiprocessing_distributed: False ngpus_per_node: 1 world_size: 1 launcher: mp local_rank: 0 use_gpu: True seed: 1500 epoch: 0 epochs: 150 ignore_index: None val_fn: validate deterministic: False sync_bn: False criterion_args: NAME: Poly1FocalLoss use_mask: False grad_norm_clip: 1 layer_decay: 0 step_per_update: 1 start_epoch: 1 sched_on_epoch: True wandb: use_wandb: False project: PointNext-ShapeNetPart tags: ['test'] name: ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo use_amp: False use_voting: False val_freq: 1 resume: False test: False finetune: False mode: test logname: None load_path: None print_freq: 10 save_freq: -1 root_dir: log/shapenetpart pretrained_path: ckpt/ShapeNetPart/ckpt_best.pth datatransforms: train: ['PointsToTensor', 'PointCloudScaling', 'PointCloudCenterAndNormalize', 'PointCloudJitter', 'ChromaticDropGPU'] val: ['PointsToTensor', 'PointCloudCenterAndNormalize'] vote: ['PointCloudScaling'] kwargs: jitter_sigma: 0.001 jitter_clip: 0.005 scale: [0.8, 1.2] gravity_dim: 1 angle: [0, 1.0, 0] feature_keys: pos,x,heights dataset: common: NAME: ShapeNetPartNormal data_root: ../data/shapenetcore_partanno_segmentation_benchmark_v0_normal use_normal: True num_points: 2048 train: split: trainval val: split: test presample: True num_classes: 50 shape_classes: 16 num_points: 2048 normal_channel: True batch_size: 8 dataloader: num_workers: 6 num_votes: 10 refine: True lr: 0.001 min_lr: None optimizer: NAME: adamw weight_decay: 0.0001 sched: multistep decay_epochs: [90, 120] decay_rate: 0.5 warmup_epochs: 0 model: NAME: BasePartSeg encoder_args: NAME: SPoTrEncoder blocks: [1, 1, 1, 1, 1] strides: [1, 2, 2, 2, 2] width: 128 in_channels: 7 sa_layers: 3 sa_use_res: True num_layers: 3 expansion: 4 radius: 0.1 radius_scaling: 2.5 nsample: 32 gamma: 16 num_gp: 16 tau_delta: 0.1 aggr_args: feature_type: dp_df reduction: max group_args: NAME: ballquery normalize_dp: True conv_args: order: conv-norm-act act_args: act: relu norm_args: norm: bn decoder_args: NAME: SPoTrPartDecoder cls_args: NAME: SegHead globals: max,avg num_classes: 50 in_channels: None norm_args: norm: bn rank: 0 distributed: False mp: False task_name: shapenetpart cfg_basename: spotr is_training: False run_name: ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo run_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo log_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo ckpt_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/checkpoint code_dir: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/code log_path: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo.log cfg_path: log/shapenetpart/ckpt_best.pth_20231203-170448-7Lbijd3qiHGNd5RtwULiKo/cfg.yaml ../data/shapenetcore_partanno_segmentation_benchmark_v0_normal/processed/test_2048_fps.pkl load successfully