RuntimeError while loading somato data using load_data.
Steps to reproduce
from alphacsc.datasets.mne_data import load_data
X, info = load_data(dataset='somato', epoch= (-2, 4), sfreq= 150.)
Expected results
No errors
Actual results
Downloading file 'MNE-somato-data.tar.gz' from 'https://osf.io/tp4sg/download?version=7' to '.../mne_data'.
100%|████████████████████████████████████████| 611M/611M [00:00<00:00, 775GB/s]
Untarring contents of '.../mne_data/MNE-somato-data.tar.gz' to '.../mne_data'
Opening raw data file .../mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.fif...
Range : 237600 ... 506999 = 791.189 ... 1688.266 secs
Ready.
Reading 0 ... 269399 = 0.000 ... 897.077 secs...
Setting up band-stop filter
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandstop filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower transition bandwidth: 0.50 Hz
- Upper transition bandwidth: 0.50 Hz
- Filter length: 1983 samples (6.603 sec)
Filtering raw data in 1 contiguous segment
Setting up high-pass filter at 2 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal highpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 2.00
- Lower transition bandwidth: 2.00 Hz (-6 dB cutoff frequency: 1.00 Hz)
- Filter length: 497 samples (1.655 sec)
111 events found
Event IDs: [1]
Not setting metadata
Not setting metadata
111 matching events found
Setting baseline interval to [-3.9992341833870637, 0.0] sec
Applying baseline correction (mode: mean)
0 projection items activated
Loading data for 111 events and 1202 original time points ...
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
5 bad epochs dropped
Computing rank from data with rank=None
Using tolerance 7.5e-09 (2.2e-16 eps * 204 dim * 1.7e+05 max singular value)
Estimated rank (grad): 204
GRAD: rank 204 computed from 204 data channels with 0 projectors
.../alphacsc/alphacsc/datasets/mne_data.py:94: RuntimeWarning: Something went wrong in the data-driven estimation of the data rank as it exceeds the theoretical rank from the info (204 > 64). Consider setting rank to "auto" or setting it explicitly as an integer.
cov = mne.compute_covariance(epochs_cov)
Reducing data rank from 204 -> 204
Estimating covariance using EMPIRICAL
Done.
Number of samples used : 127412
[done]
Not setting metadata
Not setting metadata
111 matching events found
Setting baseline interval to [-2.001282051803185, 0.0] sec
Applying baseline correction (mode: mean)
0 projection items activated
Loading data for 111 events and 1803 original time points ...
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
8 bad epochs dropped
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../.local/miniconda3/envs/alphacsc/lib/python3.9/site-packages/joblib/memory.py", line 594, in __call__
return self._cached_call(args, kwargs)[0]
File ".../.local/miniconda3/envs/alphacsc/lib/python3.9/site-packages/joblib/memory.py", line 537, in _cached_call
out, metadata = self.call(*args, **kwargs)
File ".../.local/miniconda3/envs/alphacsc/lib/python3.9/site-packages/joblib/memory.py", line 779, in call
output = self.func(*args, **kwargs)
File ".../alphacsc/alphacsc/datasets/mne_data.py", line 129, in load_data
info['events'] = events
File .../.local/miniconda3/envs/alphacsc/lib/python3.9/site-packages/mne/io/meas_info.py", line 718, in __setitem__
raise RuntimeError(self._attributes[key])
RuntimeError: events cannot be set directly.
sklearn: 1.0.1
numba: 0.54.1
nibabel: 3.2.1
nilearn: Not found
dipy: Not found
cupy: Not found
pandas: 1.3.4
pyvista: Not found
pyvistaqt: Not found
ipyvtklink: Not found
vtk: Not found
PyQt5: Not found
ipympl: Not found
mne_qt_browser: Not found
Describe the bug
RuntimeError
while loadingsomato data
usingload_data
.Steps to reproduce
Expected results
No errors
Actual results
Additional information
Platform: Linux-4.19.0-14-amd64-x86_64-with-glibc2.28 Python: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0] Executable: .../.local/miniconda3/envs/alphacsc/bin/python CPU: : 4 cores Memory: Unavailable (requires "psutil" package) mne: 1.0.dev0 numpy: 1.20.3 {blas=openblas, lapack=openblas} scipy: 1.7.1 matplotlib: 3.4.3 {backend=TkAgg}
sklearn: 1.0.1 numba: 0.54.1 nibabel: 3.2.1 nilearn: Not found dipy: Not found cupy: Not found pandas: 1.3.4 pyvista: Not found pyvistaqt: Not found ipyvtklink: Not found vtk: Not found PyQt5: Not found ipympl: Not found mne_qt_browser: Not found