modelscope / facechain

FaceChain is a deep-learning toolchain for generating your Digital-Twin.
Apache License 2.0
9.15k stars 856 forks source link

显示已经训练完成,但刷新不出产出模型subprocess.CalledProcessError: Command #183

Closed 1169624864 closed 1 year ago

1169624864 commented 1 year ago

--------uuid: qw ----------work_dir: /tmp/qw/ly261666/cv_portrait_model/test 2023-09-06 20:11:46,334 - modelscope - INFO - Use user-specified model revision: v1.0.0 2023-09-06 20:11:46,932 - modelscope - INFO - Use user-specified model revision: v1.0.0 2023-09-06 20:11:47,721 - modelscope - INFO - Use user-specified model revision: v1.0.0 2023-09-06 20:11:51,213 - modelscope - INFO - PyTorch version 2.0.1 Found. 2023-09-06 20:11:51,215 - modelscope - INFO - Loading ast index from C:\Users\Administrator.cache\modelscope\ast_indexer 2023-09-06 20:11:51,282 - modelscope - INFO - Loading done! Current index file version is 1.9.0, with md5 ddb949594d4e7b6ddff0b0d8dbf379f2 and a total number of 921 components indexed I:\facechain\app.py:663: GradioDeprecationWarning: The style method is deprecated. Please set these arguments in the constructor instead. output_images = gr.Gallery(label='Output', show_label=False).style(columns=3, rows=2, height=600, I:\facechain\app.py:710: GradioDeprecationWarning: The style method is deprecated. Please set these arguments in the constructor instead. gallery = gr.Gallery(template_gallery_list).style(grid=4, height=300) I:\facechain\app.py:710: GradioDeprecationWarning: The 'grid' parameter will be deprecated. Please use 'columns' in the constructor instead. gallery = gr.Gallery(template_gallery_list).style(grid=4, height=300) I:\facechain\app.py:761: GradioDeprecationWarning: The style method is deprecated. Please set these arguments in the constructor instead. output_images = gr.Gallery( 2023-09-06 20:11:54,365 - modelscope - INFO - Use user-specified model revision: v4.0 2023-09-06 20:11:55,789 - modelscope - INFO - Use user-specified model revision: v1.0.1 2023-09-06 20:11:56,012 - modelscope - WARNING - ('PIPELINES', 'skin-retouching-torch', 'skin-retouching-torch') not found in ast index file 2023-09-06 20:11:56,012 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_unet_skin_retouching_torch 2023-09-06 20:11:56,012 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_unet_skin_retouching_torch. 2023-09-06 20:11:56,017 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:11:56,017 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:11:56,017 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_unet_skin_retouching_torch'}. trying to build by task and model information. 2023-09-06 20:11:56,017 - modelscope - WARNING - Find task: skin-retouching-torch, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:11:56,693 - modelscope - INFO - Model revision not specified, use the latest revision: v2.0.2 2023-09-06 20:11:58,693 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet50_face-detection_retinaface 2023-09-06 20:11:58,693 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet50_face-detection_retinaface. 2023-09-06 20:11:58,697 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:11:58,697 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:11:58,697 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_resnet50_face-detection_retinaface'}. trying to build by task and model information. 2023-09-06 20:11:58,697 - modelscope - WARNING - Find task: face-detection, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:11:58,699 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet50_face-detection_retinaface\pytorchmodel.pt 2023-09-06 20:11:58,972 - modelscope - INFO - load model done 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 7 6 1 3 4 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 9 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 7 7 7 6 9 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 4 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 7 8 8 6 2 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 7 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 7 9 9 1 0 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 5 8 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 0 9 8 6 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 8 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 2 0 4 3 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 5 7 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 3 0 9 2 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 5 3 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 4 1 2 8 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 5 2 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 5 1 7 7 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 5 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 6 8 6 2 0 5 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 3 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 1 1 8 9 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 4 1 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 2 3 0 7 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 3 3 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 3 3 3 4 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 3 2 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 4 3 6 8 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 2 4 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 5 3 8 1 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 1 4 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 6 4 1 7 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 1 3 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 7 4 4 9 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 6 0 6 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 8 4 8 8 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 5 9 8 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 2 9 5 2 6 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t 2 5 9 6 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2 0 2 3 - 0 9 - 0 6 2 0 : 1 2 : 0 0 . 2 7 3 0 5 4 5 [ W : o n n x r u n t i m e : , g r a p h . c c : 3 5 4 3 o n n x r u n t i m e : : G r a p h : : C l e a n U n u s e d I n i t i a l i z e r s A n d N o d e A r g s ] R e m o v i n g i n i t i a l i z e r ' c o n s t f o l d o p t _ 2 5 9 4 ' . I t i s n o t u s e d b y a n y n o d e a n d s h o u l d b e r e m o v e d f r o m t h e m o d e l . 2023-09-06 20:12:00,967 - modelscope - INFO - Use user-specified model revision: v1.1 2023-09-06 20:12:01,149 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:01,149 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd. 2023-09-06 20:12:01,151 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:02,407 - mmcv - INFO - initialize PAFPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2023-09-06 20:12:02,407 - mmcv - INFO - lateral_convs.0.conv.weight - torch.Size([16, 64, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,407 - mmcv - INFO - lateral_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,407 - mmcv - INFO - lateral_convs.1.conv.weight - torch.Size([16, 120, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,407 - mmcv - INFO - lateral_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - lateral_convs.2.conv.weight - torch.Size([16, 160, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - lateral_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.2.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - fpn_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - downsample_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - downsample_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - downsample_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - downsample_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - pafpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - pafpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - mmcv - INFO - pafpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:02,408 - mmcv - INFO - pafpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:02,408 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt load checkpoint from local path: C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:02,438 - modelscope - INFO - load model done 2023-09-06 20:12:02,898 - modelscope - INFO - Use user-specified model revision: v1.0.1 2023-09-06 20:12:03,114 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet101_image-multiple-human-parsing 2023-09-06 20:12:03,114 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet101_image-multiple-human-parsing. 2023-09-06 20:12:03,116 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet101_image-multiple-human-parsing 2023-09-06 20:12:03,388 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet101_image-multiple-human-parsing\pytorch_model.pt 2023-09-06 20:12:03,727 - modelscope - INFO - criterion.empty_weight doesn't exist in current model, skip loading. 2023-09-06 20:12:03,765 - modelscope - INFO - load model done 2023-09-06 20:12:03,789 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:12:03,789 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:12:03,789 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_resnet101_image-multiple-human-parsing'}. trying to build by task and model information. 2023-09-06 20:12:03,789 - modelscope - WARNING - No preprocessor key ('m2fp', 'image-segmentation') found in PREPROCESSOR_MAP, skip building preprocessor. 2023-09-06 20:12:04,242 - modelscope - INFO - Use user-specified model revision: v2.0.2 2023-09-06 20:12:05,807 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet34_face-attribute-recognition_fairface 2023-09-06 20:12:05,808 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet34_face-attribute-recognition_fairface. 2023-09-06 20:12:05,813 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:12:05,813 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:12:05,813 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_resnet34_face-attribute-recognition_fairface'}. trying to build by task and model information. 2023-09-06 20:12:05,813 - modelscope - WARNING - Find task: face-attribute-recognition, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:12:06,439 - modelscope - INFO - Model revision not specified, use the latest revision: v1.1 2023-09-06 20:12:06,629 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:06,629 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd. 2023-09-06 20:12:06,633 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:06,659 - mmcv - INFO - initialize PAFPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.0.conv.weight - torch.Size([16, 64, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.1.conv.weight - torch.Size([16, 120, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.2.conv.weight - torch.Size([16, 160, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - lateral_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.2.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - fpn_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - downsample_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - downsample_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - downsample_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - downsample_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - pafpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - pafpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,660 - mmcv - INFO - pafpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:06,660 - mmcv - INFO - pafpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:06,661 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt load checkpoint from local path: C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:06,690 - modelscope - INFO - load model done 2023-09-06 20:12:06,699 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_resnet34_face-attribute-recognition_fairface\pytorch_model.pt 2023-09-06 20:12:06,981 - modelscope - INFO - load model done 2023-09-06 20:12:07,542 - modelscope - INFO - Use user-specified model revision: v2.5 2023-09-06 20:12:07,756 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_facial-landmark-confidence_flcm 2023-09-06 20:12:07,756 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_facial-landmark-confidence_flcm. 2023-09-06 20:12:07,760 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:12:07,760 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:12:07,760 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_manual_facial-landmark-confidence_flcm'}. trying to build by task and model information. 2023-09-06 20:12:07,760 - modelscope - WARNING - Find task: face-2d-keypoints, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:12:08,347 - modelscope - INFO - Model revision not specified, use the latest revision: v1.1 2023-09-06 20:12:08,534 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:08,534 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd. 2023-09-06 20:12:08,535 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd load checkpoint from local path: C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:08,557 - mmcv - INFO - initialize PAFPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.0.conv.weight - torch.Size([16, 64, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.1.conv.weight - torch.Size([16, 120, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.2.conv.weight - torch.Size([16, 160, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - lateral_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.2.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - fpn_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,557 - mmcv - INFO - downsample_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,557 - mmcv - INFO - downsample_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,558 - mmcv - INFO - downsample_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,558 - mmcv - INFO - downsample_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,558 - mmcv - INFO - pafpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,558 - mmcv - INFO - pafpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,558 - mmcv - INFO - pafpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:08,558 - mmcv - INFO - pafpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:08,558 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:08,592 - modelscope - INFO - load model done 2023-09-06 20:12:08,599 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_facial-landmark-confidence_flcm\pytorch_model.pt 2023-09-06 20:12:08,612 - modelscope - INFO - load model done 2023-09-06 20:12:09,053 - modelscope - INFO - Use user-specified model revision: v1.0.0 2023-09-06 20:12:09,358 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ir101_facerecognition_cfglint 2023-09-06 20:12:09,358 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ir101_facerecognition_cfglint. 2023-09-06 20:12:09,364 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:12:09,364 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:12:09,364 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_ir101_facerecognition_cfglint'}. trying to build by task and model information. 2023-09-06 20:12:09,365 - modelscope - WARNING - Find task: face-recognition, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:12:09,877 - modelscope - INFO - Model revision not specified, use the latest revision: v1.1 2023-09-06 20:12:10,086 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:10,086 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd. 2023-09-06 20:12:10,089 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:10,110 - mmcv - INFO - initialize PAFPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.0.conv.weight - torch.Size([16, 64, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.1.conv.weight - torch.Size([16, 120, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.2.conv.weight - torch.Size([16, 160, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - lateral_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.2.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,110 - mmcv - INFO - fpn_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,111 - mmcv - INFO - downsample_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,111 - mmcv - INFO - downsample_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,111 - mmcv - INFO - downsample_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,111 - mmcv - INFO - downsample_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,111 - mmcv - INFO - pafpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,111 - mmcv - INFO - pafpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,111 - mmcv - INFO - pafpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:10,111 - mmcv - INFO - pafpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:10,111 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt load checkpoint from local path: C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:10,138 - modelscope - INFO - load model done 2023-09-06 20:12:11,120 - modelscope - INFO - face recognition model loaded! 2023-09-06 20:12:11,620 - modelscope - INFO - Use user-specified model revision: v2.0 2023-09-06 20:12:11,822 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_face-quality-assessment_fqa 2023-09-06 20:12:11,822 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_face-quality-assessment_fqa. 2023-09-06 20:12:11,829 - modelscope - WARNING - No preprocessor field found in cfg. 2023-09-06 20:12:11,829 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file. 2023-09-06 20:12:11,829 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\Users\Administrator\.cache\modelscope\hub\damo\cv_manual_face-quality-assessment_fqa'}. trying to build by task and model information. 2023-09-06 20:12:11,829 - modelscope - WARNING - Find task: face-quality-assessment, model type: None. Insufficient information to build preprocessor, skip building preprocessor 2023-09-06 20:12:12,338 - modelscope - INFO - Model revision not specified, use the latest revision: v1.1 2023-09-06 20:12:12,517 - modelscope - INFO - initiate model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd 2023-09-06 20:12:12,517 - modelscope - INFO - initiate model from location C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd. 2023-09-06 20:12:12,519 - modelscope - INFO - initialize model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd load checkpoint from local path: C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:12,541 - mmcv - INFO - initialize PAFPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.0.conv.weight - torch.Size([16, 64, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.1.conv.weight - torch.Size([16, 120, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.2.conv.weight - torch.Size([16, 160, 1, 1]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,541 - mmcv - INFO - lateral_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,541 - mmcv - INFO - fpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - fpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - fpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - fpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - fpn_convs.2.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - fpn_convs.2.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - downsample_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - downsample_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - downsample_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - downsample_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - pafpn_convs.0.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - pafpn_convs.0.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - mmcv - INFO - pafpn_convs.1.conv.weight - torch.Size([16, 16, 3, 3]): XavierInit: gain=1, distribution=uniform, bias=0

2023-09-06 20:12:12,542 - mmcv - INFO - pafpn_convs.1.conv.bias - torch.Size([16]): The value is the same before and after calling init_weights of PAFPN

2023-09-06 20:12:12,542 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_ddsar_face-detection_iclr23-damofd\pytorch_model.pt 2023-09-06 20:12:12,567 - modelscope - INFO - load model done 2023-09-06 20:12:12,575 - modelscope - INFO - loading model from C:\Users\Administrator.cache\modelscope\hub\damo\cv_manual_face-quality-assessment_fqa\model.onnx 2023-09-06 20:12:12,602 - modelscope - INFO - load model done 100%|██████████| 3/3 [00:02<00:00, 1.01it/s] selected paths: 000.jpg total scores: 0.9253180262195952 selected paths: 001.jpg total scores: 0.9084794747728487 selected paths: 002.jpg total scores: 0.8687297483537783 2023-09-06 20:12:15,886 - modelscope - WARNING - task skin-retouching-torch input definition is missing 2023-09-06 20:12:18,714 - modelscope - WARNING - task skin-retouching-torch output keys are missing 000.jpg 0.9529447332024574 1girl, looking_at_viewer, mole, realistic, solo, transparent_background 001.jpg 0.9552488476037979 1girl, looking_at_viewer, mole, realistic, solo, transparent_background 002.jpg 0.9564706385135651 looking_at_viewer, mole, realistic, solo, transparent_background [['1girl', 'looking_at_viewer', 'mole', 'realistic', 'solo', 'transparent_background'], ['1girl', 'looking_at_viewer', 'mole', 'realistic', 'solo', 'transparent_background'], ['looking_at_viewer', 'mole', 'realistic', 'solo', 'transparent_background']] 0.png a handsome man 1.png a handsome man 2.png a handsome man instance_data_dir /tmp\qw\training_data\ly261666/cv_portrait_model\test The following values were not passed to accelerate launch and had defaults used instead: --num_processes was set to a value of 1 --num_machines was set to a value of 1 --mixed_precision was set to a value of 'no' --dynamo_backend was set to a value of 'no' To avoid this warning pass in values for each of the problematic parameters or run accelerate config. 2023-09-06 20:12:30,732 - modelscope - INFO - PyTorch version 2.0.1 Found. 2023-09-06 20:12:30,734 - modelscope - INFO - Loading ast index from C:\Users\Administrator.cache\modelscope\ast_indexer 2023-09-06 20:12:30,796 - modelscope - INFO - Loading done! Current index file version is 1.9.0, with md5 ddb949594d4e7b6ddff0b0d8dbf379f2 and a total number of 921 components indexed 09/06/2023 20:12:31 - INFO - main - Distributed environment: NO Num processes: 1 Process index: 0 Local process index: 0 Device: cuda

Mixed precision type: no

2023-09-06 20:12:32,165 - modelscope - INFO - Use user-specified model revision: v2.0 {'sample_max_value', 'dynamic_thresholding_ratio', 'clip_sample_range', 'variance_type', 'thresholding'} was not found in config. Values will be initialized to default values. {'force_upcast'} was not found in config. Values will be initialized to default values. {'attention_type'} was not found in config. Values will be initialized to default values. Downloading and preparing dataset imagefolder/test_labeled to C:/Users/Administrator/.cache/huggingface/datasets/imagefolder/test_labeled-1bed02cc460be5dc/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f... 09/06/2023 20:12:36 - WARNING - datasets.builder - HF google storage unreachable. Downloading and preparing it from source Downloading data files: 100%|██████████| 4/4 [00:00<00:00, 4013.69it/s] Downloading data files: 0it [00:00, ?it/s] Extracting data files: 0it [00:00, ?it/s] 100%|██████████| 1/1 [00:00<00:00, 334.47it/s] Dataset imagefolder downloaded and prepared to C:/Users/Administrator/.cache/huggingface/datasets/imagefolder/test_labeled-1bed02cc460be5dc/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f. Subsequent calls will reuse this data. Resuming from checkpoint "fromfacecommon" 09/06/2023 20:12:37 - INFO - main - Running training 09/06/2023 20:12:37 - INFO - main - Num examples = 3 09/06/2023 20:12:37 - INFO - main - Num Epochs = 200 09/06/2023 20:12:37 - INFO - main - Instantaneous batch size per device = 1 09/06/2023 20:12:37 - INFO - main - Total train batch size (w. parallel, distributed & accumulation) = 1 09/06/2023 20:12:37 - INFO - main - Gradient Accumulation steps = 1 09/06/2023 20:12:37 - INFO - main - Total optimization steps = 600 Traceback (most recent call last): File "facechain/train_text_to_image_lora.py", line 1469, in main() File "facechain/train_text_to_image_lora.py", line 1161, in main accelerator.load_state(os.path.join(args.output_dir, path)) File "I:\ProgramData\anaconda3\envs\facechain\lib\site-packages\accelerate\accelerator.py", line 2731, in load_state raise ValueError(f"Tried to find {input_dir} but folder does not exist") ValueError: Tried to find /tmp/qw/ly261666/cv_portrait_model/test\"fromfacecommon" but folder does not exist Traceback (most recent call last): File "I:\ProgramData\anaconda3\envs\facechain\lib\runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "I:\ProgramData\anaconda3\envs\facechain\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "I:\ProgramData\anaconda3\envs\facechain\Scripts\accelerate.exe__main__.py", line 7, in File "I:\ProgramData\anaconda3\envs\facechain\lib\site-packages\accelerate\commands\accelerate_cli.py", line 45, in main args.func(args) File "I:\ProgramData\anaconda3\envs\facechain\lib\site-packages\accelerate\commands\launch.py", line 986, in launch_command simple_launcher(args) File "I:\ProgramData\anaconda3\envs\facechain\lib\site-packages\accelerate\commands\launch.py", line 628, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['I:\ProgramData\anaconda3\envs\facechain\python.exe', 'facechain/train_text_to_image_lora.py', '--pretrained_model_name_or_path=ly261666/cv_portrait_model', '--revision=v2.0', '--sub_path=film/film', '--output_dataset_name=/tmp\qw\training_data\ly261666/cv_portrait_model\test', '--caption_column=text', '--resolution=512', '--random_flip', '--train_batch_size=1', '--num_train_epochs=200', '--checkpointing_steps=5000', '--learning_rate=1.5e-04', '--lr_scheduler=cosine', '--lr_warmup_steps=0', '--seed=42', '--output_dir=/tmp/qw/ly261666/cv_portrait_model/test', '--lora_r=4', '--lora_alpha=32', '--lora_text_encoder_r=32', '--lora_text_encoder_alpha=32', '--resume_from_checkpoint="fromfacecommon"']' returned non-zero exit status 1. Error executing the command: Command '['accelerate', 'launch', 'facechain/train_text_to_image_lora.py', '--pretrained_model_name_or_path=ly261666/cv_portrait_model', '--revision=v2.0', '--sub_path=film/film', '--output_dataset_name=/tmp\qw\training_data\ly261666/cv_portrait_model\test', '--caption_column=text', '--resolution=512', '--random_flip', '--train_batch_size=1', '--num_train_epochs=200', '--checkpointing_steps=5000', '--learning_rate=1.5e-04', '--lr_scheduler=cosine', '--lr_warmup_steps=0', '--seed=42', '--output_dir=/tmp/qw/ly261666/cv_portrait_model/test', '--lora_r=4', '--lora_alpha=32', '--lora_text_encoder_r=32', '--lora_text_encoder_alpha=32', '--resume_from_checkpoint="fromfacecommon"']' returned non-zero exit status 1. 训练已经完成!请切换至 [形象体验] 标签体验模型效果(Training done, please switch to the inference tab to generate photos.)

sunbaigui commented 1 year ago

需要看训练的log,看训练log有没有100%。然后有问题的话来回切basemodel。应该能刷新出来。