Open mycfhs opened 1 hour ago
你好,我在使用LAR去生成图像的时候,结果会比较抽象,尤其是真是图像的结果与论文相差较多。此外,何时会补全Refiner部分的模型代码呢? 下面是我在infer的代码
from torchvision.utils import save_image from scepter.modules.utils.config import Config from scepter.modules.utils.file_system import FS from scepter.modules.utils.logger import get_logger from scepter.modules.inference.largen_inference import LargenInference from scepter.studio.inference.inference_ui.largen_ui import LargenUI from PIL import Image import numpy as np output_height, output_width = 1024, 1024 tar_image = Image.open(f"asset/images/inpainting_text_ref/ex4_scene_im.jpg").convert("RGB") tar_mask = Image.open(f"asset/images/inpainting_text_ref/ex4_scene_mask.jpg").convert("L") ref_image = Image.open(f"asset/images/inpainting_text_ref/ex4_subject_im.jpg").convert("RGB") ref_mask = Image.open(f"asset/images/inpainting_text_ref/ex4_subject_mask.jpg").convert("L") ref_image = np.asarray(ref_image) ref_mask = np.asarray(ref_mask) ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) tar_image = np.asarray(tar_image) tar_mask = np.asarray(tar_mask) tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) data = LargenUI.data_preprocess_inpaint( None, tar_image, tar_mask, ref_image, ref_mask, True, 1.3, output_height, output_width ) # init file system - modelscope # FS.TEMP_DIRinit_fs_client(Config(load=False, cfg_dict={'NAME': 'ModelscopeFs', 'TEMP_DIR': 'cache/data'})) FS.TEMP_DIRinit_fs_client( Config(load=False, cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "cache/cache_data"}) ) # 新版本改名字了hhh。 ui里面保存到cache data。我们就用之前下载好的,不然得重新下载。 这个在scepter_ui.yaml里面 FS.TEMP_DIRinit_fs_client( Config(load=False, cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "cache/cache_data"}) ) # init model config logger = get_logger(name='scepter') cfg = Config(cfg_file='scepter/methods/studio/inference/largen/largen_pro.yaml') largen_infer = LargenInference(logger) largen_infer.init_from_cfg(cfg) input_config = { "image": None, "original_size_as_tuple": [1024, 1024], "target_size_as_tuple": [1024, 1024], "aesthetic_score": 6.0, "negative_aesthetic_score": 2.5, # "prompt": "a photo of a backpack", "prompt": "a backpack", "negative_prompt": "", "prompt_prefix": "", "crop_coords_top_left": [0, 0], "sample": "ddim", "sample_steps": 50, "guide_scale": 7.5, "guide_rescale": 0, "discretization": "trailing", "refine_sample": "ddim", "refine_guide_scale": 7.5, "refine_guide_rescale": 0.5, "refine_discretization": "trailing", } # start inference output = largen_infer( input=input_config, num_samples=1, intermediate_callback=None, refine_strength=0, cat_uc=True, largen_state=True, largen_task="Text_Subject_Guided_Inpainting", largen_image_scale=1, largen_tar_image=data[0], largen_tar_mask=data[1], largen_masked_image=data[2], largen_ref_image=data[3], largen_ref_mask=data[4], largen_ref_clip=data[5], largen_base_image=data[6], largen_extra_sizes=data[7], largen_bbox_yyxx=data[8], ) save_image(output["images"], "test.png")
会出现这种大片白色的抽象情况,或者质量很差。但是对于给的exapmle图像组就结果比较正常
你好,我在使用LAR去生成图像的时候,结果会比较抽象,尤其是真是图像的结果与论文相差较多。此外,何时会补全Refiner部分的模型代码呢? 下面是我在infer的代码