mosaicml / composer

Supercharge Your Model Training
http://docs.mosaicml.com
Apache License 2.0
5.16k stars 419 forks source link

Remote file name in `MemorySnapshot` not being formatted #3170

Open AleksanderWWW opened 7 months ago

AleksanderWWW commented 7 months ago

This line seems to be the issue in MemorySnapshot: remote_file_name = (self.remote_path_in_bucket + os.path.basename(f)).lstrip('/')

where the respective variables evaluate to e.g.

self.remote_path_in_bucket = '{run_name}/torch_memory_traces/rank{rank}.{batch}.memory_snapshot'
(self.remote_path_in_bucket + os.path.basename(f)).lstrip('/') = '{run_name}/torch_memory_traces/rank{rank}.{batch}.memory_snapshotrank0.4.memory_snapshot.pickle'

so not only is the path doubled. It's also only half-formatted.

Environment

System Environment Report
Created: 2024-04-03 10:25:17 CEST

PyTorch information

PyTorch version: 2.1.2+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.5.0-26-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True

CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 PRO 4750U with Radeon Graphics CPU family: 23 Model: 96 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 1 Frequency boost: enabled CPU max MHz: 1700,0000 CPU min MHz: 1400,0000 BogoMIPS: 3393.76 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 8 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected

Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] pytorch-ranger==0.1.1 [pip3] torch==2.1.2 [pip3] torch-optimizer==0.3.0 [pip3] torchdata==0.7.1 [pip3] torchmetrics==1.0.1 [pip3] torchtext==0.16.2 [pip3] torchvision==0.16.2 [pip3] triton==2.1.0 [pip3] vit-pytorch==0.35.8 [conda] numpy 1.25.1 pypi_0 pypi [conda] pytorch-ranger 0.1.1 pypi_0 pypi [conda] torch 2.1.2 pypi_0 pypi [conda] torch-optimizer 0.3.0 pypi_0 pypi [conda] torchdata 0.7.1 pypi_0 pypi [conda] torchmetrics 1.0.1 pypi_0 pypi [conda] torchtext 0.16.2 pypi_0 pypi [conda] torchvision 0.16.2 pypi_0 pypi [conda] triton 2.1.0 pypi_0 pypi [conda] vit-pytorch 0.35.8 pypi_0 pypi

Composer information

Composer version: 0.21.1 Composer commit hash: None Host processor model name: AMD Ryzen 7 PRO 4750U with Radeon Graphics Host processor core count: 8 Number of nodes: 1 Accelerator model name: N/A Accelerators per node: 0 CUDA Device Count: 0

** To reproduce

Steps to reproduce the behavior:

  1. Instantiate a logger (here used NeptuneLogger) and pass it to the Trainer instance
  2. Pass an instance of MemorySnapshot with default constructor to the Trainer instance
  3. Train

image The file name is messed-up (see the top of this issue description) - this doesn't seem to be a problem with the NeptuneLogger.

Expected behavior

The file name should not have duplicated parts and should have proper string formatting applied.

Additional context

cli99 commented 7 months ago

Thanks for catching this. I wrote a fix here https://github.com/mosaicml/composer/pull/3173 and will get it merged soon.