mouimet-infinisoft / ibrain-cli

0 stars 0 forks source link

Python Codebase Vctorize AST 3 levels perspecives #12

Open mouimet-infinisoft opened 3 months ago

mouimet-infinisoft commented 3 months ago

Your approach to vectorizing the codebase using Abstract Syntax Trees (AST) from three different perspectives is an excellent idea. It provides a holistic view of the codebase, covering structural, functional, and implementation aspects. Here's a more detailed plan and implementation based on these three perspectives:

Step-by-Step Plan

  1. Setting Up the Environment

    Ensure you have the necessary packages installed:

    pip install transformers torch ast prettytable supabase radon
  2. Perspective 1: File and Folder Structure

    This perspective involves analyzing the overall structure of the codebase, including files, folders, and imports.

    import os
    import ast
    from transformers import AutoTokenizer, AutoModel
    import torch
    
    # Initialize tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    model = AutoModel.from_pretrained("bert-base-uncased")
    
    def analyze_structure(root_dir):
       structure = []
       for subdir, _, files in os.walk(root_dir):
           for file in files:
               if file.endswith('.py'):
                   file_path = os.path.join(subdir, file)
                   structure.append(file_path)
                   with open(file_path, 'r') as f:
                       tree = ast.parse(f.read(), filename=file_path)
                       imports = [node for node in ast.walk(tree) if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom)]
                       structure.append(f"Imports in {file_path}: {imports}")
       return structure
    
    def structure_to_vector(structure):
       text_representation = "\n".join(map(str, structure))
       inputs = tokenizer(text_representation, return_tensors='pt', truncation=True, padding=True)
       outputs = model(**inputs)
       vector = outputs.last_hidden_state.mean(dim=1).detach().numpy()
       return vector
    
    root_dir = 'path/to/codebase'
    structure = analyze_structure(root_dir)
    structure_vector = structure_to_vector(structure)
  3. Perspective 2: Variables, Functions, and Classes

    This perspective focuses on the internal components of the code such as functions, classes, variables, and their relationships.

    def analyze_code_components(file_path):
       with open(file_path, 'r') as f:
           tree = ast.parse(f.read(), filename=file_path)
           functions = [node for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)]
           classes = [node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]
           variables = [node for node in ast.walk(tree) if isinstance(node, ast.Name)]
           return functions, classes, variables
    
    def components_to_vector(components):
       components_metadata = "\n".join(map(str, components))
       inputs = tokenizer(components_metadata, return_tensors='pt', truncation=True, padding=True)
       outputs = model(**inputs)
       vector = outputs.last_hidden_state.mean(dim=1).detach().numpy()
       return vector
    
    file_path = 'path/to/file.py'
    functions, classes, variables = analyze_code_components(file_path)
    components_vector = components_to_vector([functions, classes, variables])
  4. Perspective 3: Implementation Details

    This perspective analyzes control flow, cyclomatic complexity, and dependencies within the code.

    from radon.complexity import cc_visit
    from radon.metrics import h_visit
    
    def analyze_complexity(file_path):
       with open(file_path, 'r') as f:
           code = f.read()
           complexity = cc_visit(code)
           halstead_metrics = h_visit(code)
           return complexity, halstead_metrics
    
    def complexity_to_vector(complexity_metrics):
       complexity_metadata = "\n".join(map(str, complexity_metrics))
       inputs = tokenizer(complexity_metadata, return_tensors='pt', truncation=True, padding=True)
       outputs = model(**inputs)
       vector = outputs.last_hidden_state.mean(dim=1).detach().numpy()
       return vector
    
    complexity, halstead_metrics = analyze_complexity(file_path)
    complexity_vector = complexity_to_vector([complexity, halstead_metrics])

Integrating with Supabase and pg_vector

  1. Set Up pg_vector on Supabase

    Ensure pg_vector is enabled on your Supabase instance:

    CREATE EXTENSION IF NOT EXISTS vector;
  2. Create a Table for Vectors

    Create a table to store the code vectors:

    CREATE TABLE code_vectors (
       id SERIAL PRIMARY KEY,
       file_path TEXT,
       perspective TEXT,
       vector vector(768) -- Adjust the dimension based on the vector size from your model
    );
  3. Store Vectors in Database

    Insert the vectors into the database using Supabase:

    import supabase
    
    url = 'https://your-supabase-url.supabase.co'
    key = 'your-supabase-key'
    client = supabase.create_client(url, key)
    
    def store_vector(file_path, perspective, vector):
       data = {
           'file_path': file_path,
           'perspective': perspective,
           'vector': vector.tolist()  # Convert numpy array to list
       }
       response = client.table('code_vectors').insert(data).execute()
       return response
    
    # Store vectors for each perspective
    store_vector('path/to/file.py', 'structure', structure_vector)
    store_vector('path/to/file.py', 'components', components_vector)
    store_vector('path/to/file.py', 'complexity', complexity_vector)
  4. Search Using Vectors

    Implement a search functionality using pg_vector for similarity queries:

    SELECT * FROM code_vectors
    ORDER BY vector <-> '[your_vector_representation]'
    LIMIT 5;

Conclusion

Using AST to vectorize code from three perspectives—file and folder structure, variables/functions/classes, and implementation details—provides a robust way to understand and analyze the codebase. This method captures different dimensions of the code, enhancing the AI's contextual awareness. Integrating these vectors with pg_vector in Supabase allows for efficient similarity searches, enabling powerful and context-aware suggestions and collaborations.

Further Enhancements

  1. Chunking Code: For large files, consider chunking code into smaller segments before vectorization to maintain manageable vector sizes and improve relevance.
  2. Model Selection: Use models fine-tuned for code understanding, like OpenAI Codex or specialized BERT variants for code.
  3. Real-Time Updates: Implement a mechanism to update vectors in the database whenever the codebase changes.

By following this plan, you'll be able to build a sophisticated system for contextual code understanding and querying.