mpazaryna / woodshed-ai

Exploring AI
MIT License
0 stars 0 forks source link

FEYNMAN VOICE LEARNING SYSTEM #24

Open mpazaryna opened 2 weeks ago

mpazaryna commented 2 weeks ago

FEYNMAN VOICE LEARNING SYSTEM Design Document v1.0

  1. CORE PRINCIPLES

A. Natural Learning Flow

B. Learning Objectives

  1. KEY TERMINOLOGY

Learning Components:

User Roles:

  1. USER JOURNEY

Phase 1: Preparation

Phase 2: Verbal Explanation

Phase 3: Analysis

Phase 4: Review

  1. PRIMARY USE CASES

A. New Topic Learning

B. Understanding Deepening

C. Teaching Practice

  1. SUCCESS METRICS

Quantitative:

Qualitative:

  1. TECHNICAL REQUIREMENTS

Core Features:

Integration Points:

  1. GHERKIN SCENARIOS

Feature: Voice Learning Session

Scenario: Starting a New Learning Session Given the user has opened the application When they select "New Session" Then the system should initialize recording capability And display the session timer And enable the voice input

Scenario: Recording an Explanation Given the user is in an active session When they press the record button Then the system should begin voice recording And show real-time transcription And indicate recording status

Scenario: Completing an Explanation Given the user is recording When they press stop Then the system should end the recording And process the transcription And initiate the analysis phase

Scenario: Receiving Analysis Given the explanation is complete When the analysis is finished Then the system should display: | Clarity score | | Simplicity measure | | Completeness rating | | Improvement areas |

Scenario: Saving Session Results Given the analysis is complete When the user selects "Save Session" Then the system should store: | Recording | | Transcription | | Analysis results | | Session metadata |

Scenario: Reviewing Past Sessions Given the user has saved sessions When they access "Session History" Then they should see: | Session date | | Topic | | Performance metrics | | Improvement trend |

  1. NEXT STEPS

Development Phases:

  1. MVP Implementation

    • Basic recording
    • Simple analysis
    • Session storage
  2. Feature Enhancement

    • Advanced analytics
    • Progress tracking
    • User customization
  3. System Integration

    • Knowledge base connection
    • Learning path optimization
    • Performance tracking

Would you like to focus on any particular aspect of this design document or shall we proceed with refining specific components?

mpazaryna commented 2 weeks ago

DENO FEYNMAN VOICE IMPLEMENTATION Backend Architecture Design

  1. TECHNOLOGY STACK

Core:

Frontend:

  1. KEY COMPONENTS

A. Server Architecture

// app.ts
import { Application } from "https://deno.land/x/oak/mod.ts";
import { router } from "./routes.ts";

const app = new Application();

// Basic CORS setup
app.use(async (ctx, next) => {
  ctx.response.headers.set("Access-Control-Allow-Origin", "*");
  await next();
});

app.use(router.routes());
app.use(router.allowedMethods());

await app.listen({ port: 8000 });

B. Voice Processing Service

// services/voice.ts
export class VoiceProcessor {
  async processAudio(audioBuffer: ArrayBuffer) {
    // Handle incoming audio stream
    const processed = await this.convertToWav(audioBuffer);
    return processed;
  }

  private async convertToWav(buffer: ArrayBuffer) {
    // Audio format conversion logic
    return buffer;
  }
}

C. Transcription Service

// services/transcription.ts
export class TranscriptionService {
  async transcribe(audioData: ArrayBuffer): Promise<string> {
    // Integrate with preferred speech-to-text service
    // Could use Whisper API or similar
    return "transcribed text";
  }
}

D. Analysis Service

// services/analysis.ts
interface AnalysisResult {
  clarity: number;
  simplicity: number;
  completeness: number;
  suggestions: string[];
}

export class AnalysisService {
  async analyzeExplanation(text: string): Promise<AnalysisResult> {
    // Integrate with AI service for analysis
    return {
      clarity: 0,
      simplicity: 0,
      completeness: 0,
      suggestions: [],
    };
  }
}
  1. DATA STORAGE

Using Deno KV:

// db/store.ts
interface Session {
  id: string;
  timestamp: number;
  transcription: string;
  analysis: AnalysisResult;
}

export class SessionStore {
  private kv: Deno.Kv;

  constructor() {
    this.kv = await Deno.openKv();
  }

  async saveSession(session: Session): Promise<void> {
    await this.kv.set(["sessions", session.id], session);
  }

  async getSession(id: string): Promise<Session | null> {
    const session = await this.kv.get(["sessions", id]);
    return session.value as Session;
  }
}
  1. API ROUTES
// routes.ts
import { Router } from "https://deno.land/x/oak/mod.ts";

const router = new Router();

router
  .post("/sessions", async (ctx) => {
    // Handle new session creation
  })
  .post("/sessions/:id/audio", async (ctx) => {
    // Handle audio upload and processing
  })
  .get("/sessions/:id", async (ctx) => {
    // Retrieve session data
  })
  .get("/sessions/:id/analysis", async (ctx) => {
    // Get session analysis
  });

export { router };
  1. REAL-TIME COMPONENTS

WebSocket Handler:

// ws/handler.ts
export class WebSocketHandler {
  private sessions: Map<string, WebSocket>;

  constructor() {
    this.sessions = new Map();
  }

  handleConnection(ws: WebSocket, sessionId: string) {
    this.sessions.set(sessionId, ws);

    ws.onmessage = async (event) => {
      // Handle real-time audio streaming
    };
  }
}
  1. DEPLOYMENT CONSIDERATIONS
  1. SECURITY CONSIDERATIONS
// middleware/security.ts
export async function securityMiddleware(
  ctx: Context,
  next: () => Promise<void>,
) {
  ctx.response.headers.set("X-Content-Type-Options", "nosniff");
  ctx.response.headers.set("X-Frame-Options", "DENY");
  ctx.response.headers.set("X-XSS-Protection", "1; mode=block");

  await next();
}
  1. DEVELOPMENT WORKFLOW
# Run locally
deno run --allow-net --allow-read app.ts

# Run tests
deno test

# Deploy
deno deploy app.ts

Benefits of Using Deno:

  1. Built-in TypeScript support
  2. Secure by default
  3. Modern ES modules
  4. Built-in testing
  5. Standard formatting
  6. Easy deployment
  7. Web standard APIs
  8. Great performance

Would you like me to elaborate on any part of this architecture or focus on implementing a specific component first?