Open aziryasin opened 4 years ago
You can modify codes in data_io.py 50: if k in fea -----> if k in fea and and v.shape[0] == fea[k].shape[0- 53: k: v for k, v in fea.items() if k in lab ---> k: v for k, v in fea.items() if k in lab and v.shape[0] = lab[k].shape[0] to ensure that the feature and the truth value have the same size (frames).
Having same issue, not resolved
I'm getting this error. I checked the for path errors like this . But getting this error. Please help.
My CFG: `[cfg_proto] cfg_proto = proto/global.proto cfg_proto_chunk = proto/global_chunk.proto
[exp] cmd = run_nn_script = run_nn out_folder = exp/Sinhala_num seed = 1234 use_cuda = False multi_gpu = False save_gpumem = False n_epochs_tr = 24
[dataset1] data_name = Sinhala_num_tr fea = fea_name=mfcc fea_lst=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/train/feats.scp fea_opts=apply-cmvn --utt2spk=ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/train/utt2spk ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/mfcc/cmvn_train.ark ark:- ark:- | add-deltas --delta-order=2 ark:- ark:- | cw_left=5 cw_right=5
lab = lab_name=lab_cd lab_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1 lab_opts=ali-to-pdf lab_count_file=auto lab_data_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/train/ lab_graph=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1/graph
n_chunks = 5
[dataset2] data_name = Sinhala_num_dev fea = fea_name=mfcc fea_lst=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/feats.scp fea_opts=apply-cmvn --utt2spk=ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/utt2spk ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/mfcc/cmvn_test.ark ark:- ark:- | add-deltas --delta-order=2 ark:- ark:- | cw_left=5 cw_right=5
lab = lab_name=lab_cd lab_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1 lab_opts=ali-to-pdf lab_count_file=auto lab_data_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/ lab_graph=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1/graph
n_chunks = 1
[dataset3] data_name = Sinhala_num_test fea = fea_name=mfcc fea_lst=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/feats.scp fea_opts=apply-cmvn --utt2spk=ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/utt2spk ark:/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/mfcc/cmvn_test.ark ark:- ark:- | add-deltas --delta-order=2 ark:- ark:- | cw_left=5 cw_right=5
lab = lab_name=lab_cd lab_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1 lab_opts=ali-to-pdf lab_count_file=auto lab_data_folder=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/data/test/ lab_graph=/home/azir/kaldi/egs/SinhalaSpeechRecognizer/HMM_Based_4/exp/tri1/graph
n_chunks = 1
[data_use] train_with = Sinhala_num_tr valid_with = Sinhala_num_dev forward_with = Sinhala_num_test
[batches] batch_size_train = 128 max_seq_length_train = 1000 increase_seq_length_train = False start_seq_len_train = 100 multply_factor_seq_len_train = 2 batch_size_valid = 128 max_seq_length_valid = 1000
[architecture1] arch_name = MLP_layers1 arch_proto = proto/MLP.proto arch_library = neural_networks arch_class = MLP arch_pretrain_file = none arch_freeze = False arch_seq_model = False dnn_lay = 1024,1024,1024,1024,N_out_lab_cd dnn_drop = 0.15,0.15,0.15,0.15,0.0 dnn_use_laynorm_inp = False dnn_use_batchnorm_inp = False dnn_use_batchnorm = True,True,True,True,False dnn_use_laynorm = False,False,False,False,False dnn_act = relu,relu,relu,relu,softmax arch_lr = 0.08 arch_halving_factor = 0.5 arch_improvement_threshold = 0.001 arch_opt = sgd opt_momentum = 0.0 opt_weight_decay = 0.0 opt_dampening = 0.0 opt_nesterov = False
[model] model_proto = proto/model.proto model = out_dnn1=compute(MLP_layers1,mfcc) loss_final=cost_nll(out_dnn1,lab_cd) err_final=cost_err(out_dnn1,lab_cd)
[forward] forward_out = out_dnn1 normalize_posteriors = True normalize_with_counts_from = lab_cd save_out_file = False require_decoding = True
[decoding] decoding_script_folder = kaldi_decoding_scripts/ decoding_script = decode_dnn.sh decoding_proto = proto/decoding.proto min_active = 200 max_active = 7000 max_mem = 50000000 beam = 13.0 latbeam = 8.0 acwt = 0.2 max_arcs = -1 skip_scoring = false scoring_script = local/score.sh scoring_opts = "--min-lmwt 1 --max-lmwt 10" norm_vars = False `