Rafal Bogacz, A tutorial on the free-energy framework for modelling perception and learning, Journal of Mathematical Psychology, Volume 76, Part B, February 2017, Pages 198-211, ISSN 0022-2496. https://doi.org/10.1016/j.jmp.2015.11.003
[ON] Dayan, Peter, and Laurence F. Abbott. Theoretical neuroscience. Vol. 806. Cambridge, MA: MIT Press, 2001.
[ON] Gerstner, Wulfram, et al. Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014. (Available online: http://neuronaldynamics.epfl.ch/)
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. Behavioral and Brain Sciences, 1-101. https://arxiv.org/pdf/1604.00289
P. Lichtsteiner, C. Posch and T. Delbruck, "A 128× 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor," in IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008. http://ieeexplore.ieee.org/abstract/document/4444573/
Vogels, Tim P., and Larry F. Abbott. "Signal propagation and logic gating in networks of integrate-and-fire neurons." Journal of neuroscience 25.46 (2005): 10786-10795. http://www.jneurosci.org/content/25/46/10786.full.pdf
Bi, Guo-qiang, and Mu-ming Poo. "Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type." Journal of neuroscience 18.24 (1998): 10464-10472. http://www.jneurosci.org/content/18/24/10464.short
Graupner, Michael, and Nicolas Brunel. "Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location." Proceedings of the National Academy of Sciences 109.10 (2012): 3991-3996. http://www.pnas.org/content/109/10/3991.short
Markram, Henry, Wulfram Gerstner, and Per Jesper Sjöström. "Spike-timing-dependent plasticity: a comprehensive overview." Frontiers in synaptic neuroscience 4 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395004/
Fusi, Stefano, and L. F. Abbott. "Limits on the memory storage capacity of bounded synapses." Nature neuroscience 10.4 (2007): 485-493. https://www.nature.com/articles/nn1859
Rao, Rajesh PN, and Dana H. Ballard. "Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects." Nature neuroscience 2.1 (1999).
Shriki, Oren, David Hansel, and Haim Sompolinsky. "Rate models for conductance-based cortical neuronal networks." Neural computation 15.8 (2003): 1809-1841.
Introduction to Computational Neuroscience
Machine learning and Neuroscience
Neuromorphic Engineering:
Memristors and Nanotechnologies for Neuromorphic Hardware
Spiking neural networks:
Learning in Neural Circuits
Neural Circuit Dynamics
Bayesian Brain
Artificial Neural Networks and Deep Learning