Closed dp-rice closed 1 year ago
Resolves #77. Normalizes input data so that log parameters are centered around zero. Makes it easier to specify prior distributions. Also move posterior plotting to fit.py instead of a Jupyter notebook.
fit.py
$ ./fit.py 2> /dev/null ------------------------------------------------------------ Crits_Christoph: sars_cov_2 relative abundance per incidence ------------------------------------------------------------ Posterior arithmetic mean: 2.2e-11 Posterior geometric mean: 1.8e-11 Posterior quantiles: 5% 25% 50% 75% 95% 7.7e-12 1.2e-11 1.7e-11 2.5e-11 4.7e-11 ---------------------------------------------------- Rothman: sars_cov_2 relative abundance per incidence ---------------------------------------------------- Posterior arithmetic mean: 6.0e-12 Posterior geometric mean: 5.9e-12 Posterior quantiles: 5% 25% 50% 75% 95% 4.1e-12 5.1e-12 5.9e-12 6.8e-12 8.5e-12 ----------------------------------------------------------- Crits_Christoph: norovirus relative abundance per incidence ----------------------------------------------------------- Posterior arithmetic mean: 1.2e-10 Posterior geometric mean: 9.8e-11 Posterior quantiles: 5% 25% 50% 75% 95% 3.6e-11 6.5e-11 9.8e-11 1.5e-10 2.6e-10 --------------------------------------------------- Rothman: norovirus relative abundance per incidence --------------------------------------------------- Posterior arithmetic mean: 1.1e-08 Posterior geometric mean: 1.1e-08 Posterior quantiles: 5% 25% 50% 75% 95% 8.3e-09 9.9e-09 1.1e-08 1.2e-08 1.5e-08
Resolves #77. Normalizes input data so that log parameters are centered around zero. Makes it easier to specify prior distributions. Also move posterior plotting to
fit.py
instead of a Jupyter notebook.