Closed DrameMariama closed 3 years ago
I'm doing a binary sentence similarity where labels are 0 and 1. the prediction output is as follow:
MSE = 0.12034694 global_step = 0 label_ids = [0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] loss = 0.12034694 pearson = 0.6646034 pred = [ 0.9968272 -0.03098304 0.8957741 -0.07417393 -0.09186892 -0.0707963 0.74726754 -0.05655669 -0.09204277 -0.03543881 -0.07745712 -0.05300986 1.1416211 -0.08503725 -0.09837753 1.004629 -0.07550014 0.00657438 -0.08694188 -0.02797052 -0.08749591 -0.08376077 0.00488611 -0.07453079 -0.04001749 0.9580759 0.61144847 -0.02444758 -0.06606578 1.0700202 -0.08189891 -0.09389639 -0.04471161 -0.07932074 -0.08922736 1.072242 1.1144217 -0.0899142 -0.05957434 -0.01848362 -0.08165789 0.56197506 -0.10288966 0.9589868 -0.08966823 -0.07423133 0.9501468 -0.08691276 1.0427929 -0.07580899 -0.08085545 0.05613842 -0.06668296 0.67278963 0.04689811 -0.08730051 -0.09488467 0.7494736 0.59106404 -0.05784546 -0.0580256 0.5586943 0.82942 -0.08266563 -0.08970116 -0.07241884 -0.08084895 -0.0888657 0.16364944 -0.08838011 -0.08021087 -0.07139066 0.98460495 -0.09568951 -0.08403315 -0.03191408 0.84516126 -0.07047645 1.04264 1.1047416 0.9219344 0.93681306 0.00817167 -0.08582229 -0.09332561 -0.05327708 -0.08006877 -0.06815267 0.08796047 -0.10083354 -0.08134227 -0.0519708 -0.07535361 0.02822088 0.8645804 -0.08838581 0.05759583 -0.09652802 -0.0544436 0.8467474 1.011137 -0.0152052 -0.09230338 -0.08920024 0.9547418 -0.09625152 -0.07814157 -0.05981593 -0.06737825 -0.0525138 -0.07601891 0.00535123 -0.09302492 -0.05335039 0.57089394 0.9735016 -0.07029892 0.9383386 0.17835245 0.07288147 -0.05812666 -0.09008455 0.16482374 -0.06855011 -0.07975283 -0.0688867 0.16806357 -0.08691715 0.8265008 -0.05552685 -0.04530346 0.9801875 0.9665445 -0.10243599 -0.09238719 -0.08140092 -0.07281174 -0.09341179 -0.08653723 -0.04425526 -0.04663768 -0.07175027 -0.05161241 -0.07474666 -0.08247717 -0.07625985 0.05558392 -0.09737069 -0.08582785 -0.08285176 -0.09085771 -0.08242864 -0.06997188 -0.09492967 0.87413186 0.00221197 -0.09681983 1.1069126 -0.07090654 1.0427476 0.97657245 -0.05734477 -0.06612358 0.17080042 0.04073562 0.8623907 -0.06221616 -0.07726647 -0.08040509 0.35656622 0.88446796 0.01673024 -0.09752481 -0.09414034 -0.06563986 -0.05257557 -0.08664538 -0.03824814 0.99862784 0.9537769 -0.0507925 1.0611311 0.26432222 0.02389601 -0.08002971 0.24677996 -0.04190464 -0.07924199 0.44772255 0.16013458 1.1142675 -0.06626779 0.11091595 1.0015993 0.98124903 -0.08817458 -0.0803092 -0.00456336 1.0019325 -0.09834503 -0.07607836 0.9602315 -0.050502 -0.09498988 0.93423295 -0.08353204 0.95852834 -0.08302109 -0.03645961 -0.0837692 -0.04907575 -0.08840061 -0.04175755 0.05482076 0.98270017 -0.05114298 -0.07228722 0.81660086 -0.07696462 -0.08263256 1.0464804 -0.08961527 0.01591448 0.03492247 -0.03415895 -0.07692334 0.7936482 0.98901486 1.0336974 -0.01263706 0.64612895 -0.07319017 -0.08374722 0.98839957 -0.0816884 -0.08701541 0.9753411 0.38509053 -0.08011929 -0.08158413 -0.08267076 -0.07939766 -0.0851294 -0.10770355 -0.04284238 -0.09182031 1.0836056 -0.07639952 -0.09889527 -0.01996168 -0.09211037 -0.07140023 -0.07940755 -0.08331279 -0.06124184 -0.08752528 -0.07155015 1.06396 -0.09301544 -0.07780191 0.18636224 1.0234824 -0.06206534 -0.10370414 0.20406811 -0.09179069 -0.08385491 -0.07036848 -0.08004359 1.04012 -0.08071671 0.8393969 0.0629826 -0.05980002 -0.09884399 -0.04910354 -0.06946485 -0.09015001 1.0906504 0.986099 -0.05425195 0.5622222 0.935292 -0.08033577 1.0642971 1.0911734 -0.08062124 0.7644436 0.87184227 -0.07042552 -0.08266561 0.9998966 -0.03840258 -0.08939464 1.009424 0.25307548 -0.09172264 -0.08039551 -0.07240216 1.0881265 0.0290037 0.9582196 1.0014933 -0.00588964 0.08343956 -0.10145007 1.1023728 1.0932642 -0.09266437 -0.09243488 -0.08602741 0.18427256 -0.08351617 0.9532236 1.0550426 -0.09006116 -0.08440115 0.9653421 -0.07703653 0.9551673 ] spearman = 0.31011906
label_ids seems to be the true labels from the test file. But I don't really now how to interpret the pred list @yfpeng
label_ids
pred
The element in the pred list represents the similarity between two sentences.
I'm doing a binary sentence similarity where labels are 0 and 1. the prediction output is as follow:
label_ids
seems to be the true labels from the test file. But I don't really now how to interpret thepred
list @yfpeng