Closed Sogand65 closed 8 months ago
@Sogand65
As the error implies the seems to me a mismatch in lengths - What is the output of the following:
dim(cbmc)
length(cbmc$nFeature_RNA)
dim(cbmc@assays$escape.GO_TNF_prod.ssGSEA@data
Thanks, Nick
Hi Nick, Thanks for replying. The error goes a way as long as I add another gene list, so it appears the error only occurs when using a single gene list! these are the outputs you asked: dim(cbmc) [1] 24897 74618
length(cbmc$nFeature_RNA) [1] 74618
dim(cbmc@assays$escape.GO_TNF.ssGSEA$data) NULL
class(cbmc@assays$escape.GO_TNF.ssGSEA$data) [1] "numeric" (I guess this is the problem when using only one feature (gene list))
thanks!
Thanks for the follow up.
Hi,
I want to calculate the scoring of a single pathway on GO so I can run the runEscape() successfully but getting an error for normalization! can you help me with the following error. Do you think the number of gene sets would affect the normalization? Thanks for your help!
GS.GO_TNF <- list(GOBP_POSITIVE_REGULATION_OF_TUMOR_NECROSIS_FACTOR_SUPERFAMILY_CYTOKINE_PRODUCTION = GS.GO[["GOBP_POSITIVE_REGULATION_OF_TUMOR_NECROSIS_FACTOR_SUPERFAMILY_CYTOKINE_PRODUCTION"]]) cbmc <- LoadSeuratRds(paste0(resPath, "escape/cbmc_escape.Rds"))
cbmc <- runEscape(cbmc, method = "ssGSEA", gene.sets = GS.GO_TNF, groups = 5000, new.assay.name = "escape.GO_TNF_prod.ssGSEA")
cbmc <- performNormalization(cbmc, assay = "escape.GO_TNF_prod.ssGSEA", gene.sets = GS.GO_TNF, scale.factor = cbmc$nFeature_RNA)
[1] "Normalizing enrichment scores per cell..." Error in enriched[, x] <- enriched[, x]/scale.factor : number of items to replace is not a multiple of replacement length
Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/Chicago tzcode source: internal
attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base
other attached packages: [1] NMF_0.27 cluster_2.1.6 rngtools_1.5.2 registry_0.5-1 mixtools_2.0.0 GSEABase_1.64.0
[7] graph_1.80.0 annotate_1.80.0 XML_3.99-0.16.1 AnnotationDbi_1.64.1 IRanges_2.36.0 S4Vectors_0.40.2
[13] Biobase_2.62.0 BiocGenerics_0.48.1 AUCell_1.24.0 openxlsx_4.2.5.2 harmony_1.2.0 Rcpp_1.0.12
[19] gridExtra_2.3 beepr_1.3 ggpubr_0.6.0 clustree_0.5.1 ggraph_2.2.0 RColorBrewer_1.1-3
[25] tidyr_1.3.1 dplyr_1.1.4 readxl_1.4.3 patchwork_1.2.0 GSA_1.03.2 ggplot2_3.5.0
[31] Seurat_5.0.2 SeuratObject_5.0.1 sp_2.1-3 escape_1.99.1
loaded via a namespace (and not attached): [1] segmented_2.0-3 matrixStats_1.2.0 GSVA_1.51.6 spatstat.sparse_3.0-3
[5] bitops_1.0-7 doParallel_1.0.17 httr_1.4.7 tools_4.3.2
[9] sctransform_0.4.1 backports_1.4.1 utf8_1.2.4 R6_2.5.1
[13] HDF5Array_1.30.1 lazyeval_0.2.2 uwot_0.1.16 ggdist_3.3.1
[17] rhdf5filters_1.14.1 withr_3.0.0 progressr_0.14.0 cli_3.6.2
[21] spatstat.explore_3.2-6 fastDummies_1.7.3 spatstat.data_3.0-4 ggridges_0.5.6
[25] pbapply_1.7-2 R.utils_2.12.3 parallelly_1.37.1 rstudioapi_0.15.0
[29] RSQLite_2.3.5 generics_0.1.3 ica_1.0-3 spatstat.random_3.2-3
[33] zip_2.3.1 car_3.1-2 distributional_0.4.0 Matrix_1.6-5
[37] fansi_1.0.6 abind_1.4-5 R.methodsS3_1.8.2 lifecycle_1.0.4
[41] carData_3.0-5 SummarizedExperiment_1.32.0 rhdf5_2.46.1 SparseArray_1.2.4
[45] Rtsne_0.17 grid_4.3.2 blob_1.2.4 promises_1.2.1
[49] crayon_1.5.2 miniUI_0.1.1.1 lattice_0.22-5 beachmat_2.18.1
[53] msigdbr_7.5.1 cowplot_1.1.3 KEGGREST_1.42.0 pillar_1.9.0
[57] GenomicRanges_1.54.1 future.apply_1.11.1 codetools_0.2-19 leiden_0.4.3.1
[61] glue_1.7.0 data.table_1.15.2 vctrs_0.6.5 png_0.1-8
[65] spam_2.10-0 cellranger_1.1.0 gtable_0.3.4 kernlab_0.9-32
[69] cachem_1.0.8 S4Arrays_1.2.0 mime_0.12 tidygraph_1.3.1
[73] survival_3.5-8 audio_0.1-11 SingleCellExperiment_1.24.0 pheatmap_1.0.12
[77] iterators_1.0.14 ellipsis_0.3.2 fitdistrplus_1.1-11 ROCR_1.0-11
[81] nlme_3.1-164 bit64_4.0.5 RcppAnnoy_0.0.22 GenomeInfoDb_1.38.6
[85] irlba_2.3.5.1 KernSmooth_2.23-22 colorspace_2.1-0 DBI_1.2.2
[89] UCell_2.6.2 tidyselect_1.2.0 bit_4.0.5 compiler_4.3.2
[93] BiocNeighbors_1.20.2 DelayedArray_0.28.0 plotly_4.10.4 scales_1.3.0
[97] lmtest_0.9-40 stringr_1.5.1 digest_0.6.34 goftest_1.2-3
[101] spatstat.utils_3.0-4 XVector_0.42.0 htmltools_0.5.7 pkgconfig_2.0.3
[105] sparseMatrixStats_1.14.0 MatrixGenerics_1.14.0 fastmap_1.1.1 rlang_1.1.3
[109] htmlwidgets_1.6.4 shiny_1.8.0 DelayedMatrixStats_1.24.0 farver_2.1.1
[113] zoo_1.8-12 jsonlite_1.8.8 BiocParallel_1.36.0 R.oo_1.26.0
[117] BiocSingular_1.18.0 RCurl_1.98-1.14 magrittr_2.0.3 GenomeInfoDbData_1.2.11
[121] dotCall64_1.1-1 Rhdf5lib_1.24.2 munsell_0.5.0 babelgene_22.9
[125] viridis_0.6.5 reticulate_1.35.0 stringi_1.8.3 zlibbioc_1.48.0
[129] MASS_7.3-60.0.1 plyr_1.8.9 parallel_4.3.2 listenv_0.9.1
[133] ggrepel_0.9.5 deldir_2.0-4 Biostrings_2.70.2 graphlayouts_1.1.0
[137] splines_4.3.2 tensor_1.5 igraph_2.0.2 spatstat.geom_3.2-9
[141] ggsignif_0.6.4 RcppHNSW_0.6.0 reshape2_1.4.4 ScaledMatrix_1.10.0
[145] foreach_1.5.2 tweenr_2.0.3 httpuv_1.6.14 RANN_2.6.1
[149] purrr_1.0.2 polyclip_1.10-6 future_1.33.1 scattermore_1.2
[153] gridBase_0.4-7 ggforce_0.4.2 rsvd_1.0.5 broom_1.0.5
[157] xtable_1.8-4 RSpectra_0.16-1 rstatix_0.7.2 later_1.3.2
[161] viridisLite_0.4.2 ggpointdensity_0.1.0 tibble_3.2.1 memoise_2.0.1
[165] globals_0.16.2