Open vbelissen opened 5 years ago
I have just tested the code again and it runs without any problem for me when I ran the script you have provided.
python -m nmt --src=sign --tgt=de --train_prefix=../Data/phoenix2014T.train --dev_prefix=../Data/phoenix2014T.dev --test_prefix=../Data/phoenix2014T.test --out_dir=../test_out/ --vocab_prefix=../Data/phoenix2014T.vocab --source_reverse=True --num_units=1000 --num_layers=4 --num_train_steps=150000 --residual=True --attention=luong --base_gpu=0 --unit_type=gru
I used a virtual environment with python 2.7.14 and tensorflow 1.4.0-rc1. As cuda I have 8.0 and cudnn 6.0. See the list of installed packages in my environment below:
backports.weakref 1.0.post1 <pip>
bleach 1.5.0 <pip>
ca-certificates 2017.08.26 h1d4fec5_0
certifi 2018.1.18 py27_0
enum34 1.1.6 <pip>
funcsigs 1.0.2 <pip>
futures 3.2.0 <pip>
html5lib 0.9999999 <pip>
intel-openmp 2018.0.0 8
libedit 3.1 heed3624_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 7.2.0 h7cc24e2_2
libgfortran-ng 7.2.0 hdf63c60_3
libstdcxx-ng 7.2.0 h7a57d05_2
Markdown 2.6.11 <pip>
mkl 2018.0.2 1
mkl_fft 1.0.1 py27h3010b51_0
mkl_random 1.0.1 py27h629b387_0
mock 2.0.0 <pip>
ncurses 6.0 h9df7e31_2
numpy 1.14.2 py27hdbf6ddf_1
numpy 1.14.0 <pip>
opencv 2.4.11 nppy27_0 menpo
openssl 1.0.2n hb7f436b_0
pbr 3.1.1 <pip>
pip 9.0.1 py27ha730c48_4
protobuf 3.5.1 <pip>
python 2.7.14 h1571d57_29
readline 7.0 ha6073c6_4
scikit-learn 0.19.1 <pip>
scipy 1.0.0 <pip>
setuptools 38.5.0 <pip>
setuptools 38.4.0 py27_0
six 1.11.0 <pip>
sklearn 0.0 <pip>
sqlite 3.22.0 h1bed415_0
tensorflow-gpu 1.4.0rc1 <pip>
tensorflow-tensorboard 0.4.0 <pip>
tk 8.6.7 hc745277_3
Werkzeug 0.14.1 <pip>
wheel 0.30.0 py27h2bc6bb2_1
wheel 0.30.0 <pip>
zlib 1.2.11 ha838bed_2
I see from your log that you have created a virtual environment with python 2.7 using Anaconda 3. My suggestion would be to install Anaconda 2 and create your virtual environment using it instead.
And here is the log:
# Job id 0
# Set random seed to 285
# hparams:
src=sign
tgt=de
train_prefix=../Data/phoenix2014T.train
dev_prefix=../Data/phoenix2014T.dev
test_prefix=../Data/phoenix2014T.test
out_dir=../test_out/
# Vocab file ../Data/phoenix2014T.vocab.de exists
saving hparams to ../test_out/hparams
saving hparams to ../test_out/best_bleu/hparams
attention=luong
attention_architecture=standard
base_gpu=0
batch_size=1
beam_width=3
best_bleu=0
best_bleu_dir=../test_out/best_bleu
bpe_delimiter=None
colocate_gradients_with_ops=True
decay_factor=0.98
decay_steps=10000
dev_prefix=../Data/phoenix2014T.dev
dropout=0.2
encoder_type=uni
eos=</s>
epoch_step=0
eval_on_fly=True
forget_bias=1.0
infer_batch_size=32
init_op=glorot_normal
init_weight=0.1
learning_rate=1e-05
length_penalty_weight=0.0
log_device_placement=False
max_gradient_norm=5.0
max_train=0
metrics=['bleu']
num_buckets=0
num_embeddings_partitions=0
num_gpus=1
num_layers=4
num_residual_layers=3
num_train_steps=150000
num_units=1000
optimizer=adam
out_dir=../test_out/
pass_hidden_state=True
random_seed=285
residual=True
snapshot_interval=1000
sos=<s>
source_reverse=True
src=sign
src_max_len=300
src_max_len_infer=300
start_decay_step=0
steps_per_external_eval=None
steps_per_stats=100
test_prefix=../Data/phoenix2014T.test
tgt=de
tgt_max_len=50
tgt_max_len_infer=None
tgt_vocab_file=../Data/phoenix2014T.vocab.de
tgt_vocab_size=2891
time_major=True
train_prefix=../Data/phoenix2014T.train
unit_type=gru
vocab_prefix=../Data/phoenix2014T.vocab
WARNING:tensorflow:From train.py:59: __init__ (from tensorflow.contrib.data.python.ops.readers) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.TextLineDataset`.
WARNING:tensorflow:From utils/iterator_utils.py:111: zip (from tensorflow.contrib.data.python.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.zip()`.
WARNING:tensorflow:From utils/iterator_utils.py:123: calling map (from tensorflow.contrib.data.python.ops.dataset_ops) with num_threads is deprecated and will be removed in a future version.
Instructions for updating:
Replace `num_threads=T` with `num_parallel_calls=T`. Replace `output_buffer_size=N` with `ds.prefetch(N)` on the returned dataset.
WARNING:tensorflow:From utils/iterator_utils.py:123: calling map (from tensorflow.contrib.data.python.ops.dataset_ops) with output_buffer_size is deprecated and will be removed in a future version.
Instructions for updating:
Replace `num_threads=T` with `num_parallel_calls=T`. Replace `output_buffer_size=N` with `ds.prefetch(N)` on the returned dataset.
# creating train graph ...
num_layers = 4, num_residual_layers=3
cell 0 GRU DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0
cell 1 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
cell 0 GRU DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0
cell 1 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0
start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98
# Trainable variables
conv1/weights:0, (11, 11, 3, 96), /device:GPU:0
conv1/biases:0, (96,), /device:GPU:0
conv2/weights:0, (5, 5, 48, 256), /device:GPU:0
conv2/biases:0, (256,), /device:GPU:0
conv3/weights:0, (3, 3, 256, 384), /device:GPU:0
conv3/biases:0, (384,), /device:GPU:0
conv4/weights:0, (3, 3, 192, 384), /device:GPU:0
conv4/biases:0, (384,), /device:GPU:0
conv5/weights:0, (3, 3, 192, 256), /device:GPU:0
conv5/biases:0, (256,), /device:GPU:0
fc6/weights:0, (9216, 4096), /device:GPU:0
fc6/biases:0, (4096,), /device:GPU:0
fc7/weights:0, (4096, 4096), /device:GPU:0
fc7/biases:0, (4096,), /device:GPU:0
embeddings/decoder/embedding_decoder:0, (2891, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891), /device:GPU:0
# creating eval graph ...
num_layers = 4, num_residual_layers=3
cell 0 GRU DeviceWrapper, device=/gpu:0
cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 0 GRU DeviceWrapper, device=/gpu:0
cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98
# Trainable variables
conv1/weights:0, (11, 11, 3, 96), /device:GPU:0
conv1/biases:0, (96,), /device:GPU:0
conv2/weights:0, (5, 5, 48, 256), /device:GPU:0
conv2/biases:0, (256,), /device:GPU:0
conv3/weights:0, (3, 3, 256, 384), /device:GPU:0
conv3/biases:0, (384,), /device:GPU:0
conv4/weights:0, (3, 3, 192, 384), /device:GPU:0
conv4/biases:0, (384,), /device:GPU:0
conv5/weights:0, (3, 3, 192, 256), /device:GPU:0
conv5/biases:0, (256,), /device:GPU:0
fc6/weights:0, (9216, 4096), /device:GPU:0
fc6/biases:0, (4096,), /device:GPU:0
fc7/weights:0, (4096, 4096), /device:GPU:0
fc7/biases:0, (4096,), /device:GPU:0
embeddings/decoder/embedding_decoder:0, (2891, 1000),
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000),
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891), /device:GPU:0
WARNING:tensorflow:From inference.py:57: from_tensor_slices (from tensorflow.contrib.data.python.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.from_tensor_slices()`.
# creating infer graph ...
num_layers = 4, num_residual_layers=3
cell 0 GRU DeviceWrapper, device=/gpu:0
cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 0 GRU DeviceWrapper, device=/gpu:0
cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0
start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98
# Trainable variables
conv1/weights:0, (11, 11, 3, 96), /device:GPU:0
conv1/biases:0, (96,), /device:GPU:0
conv2/weights:0, (5, 5, 48, 256), /device:GPU:0
conv2/biases:0, (256,), /device:GPU:0
conv3/weights:0, (3, 3, 256, 384), /device:GPU:0
conv3/biases:0, (384,), /device:GPU:0
conv4/weights:0, (3, 3, 192, 384), /device:GPU:0
conv4/biases:0, (384,), /device:GPU:0
conv5/weights:0, (3, 3, 192, 256), /device:GPU:0
conv5/biases:0, (256,), /device:GPU:0
fc6/weights:0, (9216, 4096), /device:GPU:0
fc6/biases:0, (4096,), /device:GPU:0
fc7/weights:0, (4096, 4096), /device:GPU:0
fc7/biases:0, (4096,), /device:GPU:0
embeddings/decoder/embedding_decoder:0, (2891, 1000),
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000),
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0
dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0
dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891),
# log_file=../test_out/log_1552481826
created train model with fresh parameters, time 1.24s
created infer model with fresh parameters, time 0.21s
# 301
src: /features/fullFrame-227x227px/dev/20June_2011_Monday_heute-6514/
ref: und eher wechselhaft geht es mit unserem wetter auch weiter .
nmt: mäßig rum rum nordseeluft temperaturunterschied temperaturunterschied temperaturunterschied temperaturunterschied temperaturunterschied temperaturunterschied davon davon davon davon uhr uhr uhr uhr uhr frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig frostig neben neben neben
created eval model with fresh parameters, time 0.15s
eval dev: perplexity 4736.94, time 220s, Wed Mar 13 13:01:14 2019.
eval test: perplexity 4779.63, time 270s, Wed Mar 13 13:05:45 2019.
created infer model with fresh parameters, time 0.16s
# Start step 0, lr 1e-05, Wed Mar 13 13:05:45 2019
# Init train iterator, skipping 0 elements
global step 100 lr 1e-05 step-time 1.35s wps 0.01K ppl 965.24 bleu 0.00
hi , after using your solution, the same problem still occurs. I used a virtual environment with python 2.7.16 and tensorflow 1.4.0. As cuda I have 8.0 and cudnn 6.0.
Any updates on this?
Hi, I meet the same issue. Any update?
I am facing the same issue. @jackson1895 @vbelissen did you find a solution?
Here is the command I run:
python -m nmt --src=sign --tgt=de --train_prefix=../Data/phoenix2014T.train --dev_prefix=../Data/phoenix2014T.dev --test_prefix=../Data/phoenix2014T.test --out_dir=../test_out/ --vocab_prefix=../Data/phoenix2014T.vocab --source_reverse=True --num_units=1000 --num_layers=4 --num_train_steps=150000 --residual=True --attention=luong --base_gpu=0 --unit_type=gru
Here is the error I get, with python 2.7 and TF 1.3 (or 1.4.1):