nel-lab / mesmerize-core

High level pandas-based API for batch analysis of Calcium Imaging data using CaImAn
Other
60 stars 15 forks source link

TypeError: Graphic.__init__() got an unexpected keyword argument 'vmin_vmax_sliders' #240

Closed qweasdf1354 closed 11 months ago

qweasdf1354 commented 1 year ago

Hi author, i have some issues, could you help me to resovle?

the system is window10 and i run the installation protocal from the github page using anaconda.

when i run the mcorr_cnmf.ipynb, i can run the code until the 'Visualize raw & MCorr movie side-by-side' step.

**when i run the following cell**
 'mcorr_iw = fpl.ImageWidget(
    data=[input_movie, mcorr_movie], 
    vmin_vmax_sliders=True, 
    cmap="gnuplot2"
)
mcorr_iw.show()'

**the following error occur**

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[60], line 1
----> 1 mcorr_iw = fpl.ImageWidget(
      2     data=[input_movie, mcorr_movie], 
      3     vmin_vmax_sliders=True, 
      4     cmap="gnuplot2"
      5 )
      6 mcorr_iw.show()

File D:\software\fastplotlib\fastplotlib\widgets\image.py:554, in ImageWidget.__init__(self, data, dims_order, slider_dims, window_funcs, frame_apply, grid_shape, names, grid_plot_kwargs, **kwargs)
    552 frame = self._process_indices(d, slice_indices=self._current_index)
    553 frame = self._process_frame_apply(frame, data_ix)
--> 554 ig = ImageGraphic(frame, name="image_widget_managed", **kwargs)
    555 subplot.add_graphic(ig)
    556 subplot.name = name

File D:\software\fastplotlib\fastplotlib\graphics\image.py:259, in ImageGraphic.__init__(self, data, vmin, vmax, cmap, filter, isolated_buffer, *args, **kwargs)
    201 def __init__(
    202     self,
    203     data: Any,
   (...)
    210     **kwargs,
    211 ):
    212     """
    213     Create an Image Graphic
    214 
   (...)
    256 
    257     """
--> 259     super().__init__(*args, **kwargs)
    261     data = to_gpu_supported_dtype(data)
    263     # TODO: we need to organize and do this better

TypeError: Graphic.__init__() got an unexpected keyword argument 'vmin_vmax_sliders'

I try to search the similar situation, but it seems it is none, so could you help me?

kushalkolar commented 1 year ago

Hi, thanks for posting the traceback! We just did a new release of fastplotlib yesterday, the vmin vmax sliders have been removed in favor of a histogram widget: https://github.com/fastplotlib/fastplotlib/pull/344

You can just remove that argument.

We will update the notebooks soon.

qweasdf1354 commented 1 year ago

thanks a lot

qweasdf1354 commented 1 year ago

Hi author, today i saw you update the notebook. I try it. that is great! but i still meet some problem i can not resolve by myself. so i try to ask for help.

1.when i run the cell below 'Modify the window_funcs at any time.'

''' iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True)

for g in iw_means.managed_graphics: g.cmap.vmax = 200 '''

the following error occur

'''

NameError Traceback (most recent call last) Cell In[62], line 1 ----> 1 mcorr_iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True) 3 for g in iw_means.managed_graphics: 4 g.cmap.vmax = 200

NameError: name 'mcorr_iw_means' is not defined ''' Although the it seems not have impact to the following code, i wanna to let you know

2.When i use the mcorr_viz.show(), there are some problems.

a. I see the left up panel show error and ask me to 'Click to show javascript error' the following is the error ''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703) '''

the above is motion correction viz and when i use the cnmf viz the following is

''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703) ''' there are also some wanning

''' C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\ipydatagrid\datagrid.py:460: UserWarning: Index name of 'index' is not round-trippable. schema = pd.io.json.build_table_schema(dataframe) C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\graphics_features_base.py:34: UserWarning: converting float64 array to float32 warn(f"converting {array.dtype} array to float32") '''

3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters? I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image. In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params

4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.

And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].

I apologize for a lot of basic question and If you can help me I will appreciate. Looking forward your reply and I wanna to say that is great work! by the way i saw the PCA trace of the cell feature among time plot. but i do not see in this notebook. it will release in the future notebook?

kushalkolar commented 1 year ago

See where it says:

Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered

You need to install ipydatagrid.

Please follow the instructions on the mesmerize-viz repo to install it. :)

On Fri, Nov 3, 2023, 12:05 qweasdf1354 @.***> wrote:

Hi author, today i saw you update the notebook. I try it. that is great! but i still meet some problem i can not resolve by myself. so i try to ask for help.

1.when i run the cell below 'Modify the window_funcs at any time.'

''' iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True)

for g in iw_means.managed_graphics: g.cmap.vmax = 200 '''

the following error occur '''

NameError Traceback (most recent call last) Cell In[62], line 1 ----> 1 mcorr_iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True) 3 for g in iw_means.managed_graphics: 4 g.cmap.vmax = 200

NameError: name 'mcorr_iw_means' is not defined ''' Although the it seems not have impact to the following code, i wanna to let you know

2.When i use the mcorr_viz.show(), there are some problems.

a. I see the left up panel show error and ask me to 'Click to show javascript error' the following is the error ''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936 ) at f.loadModelClass ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729 ) at f._make_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517 ) at f.new_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137 ) at f.handle_comm_open ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894 ) at _handleCommOpen ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473 ) at v._handleCommOpen ( http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage ( http://localhost:8888/static/notebook/3676.bundle.js:1:32703) '''

the above is motion correction viz and when i use the cnmf viz the following is

''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936 ) at f.loadModelClass ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729 ) at f._make_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517 ) at f.new_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137 ) at f.handle_comm_open ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894 ) at _handleCommOpen ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473 ) at v._handleCommOpen ( http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage ( http://localhost:8888/static/notebook/3676.bundle.js:1:32703) ''' there are also some wanning

''' C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\ipydatagrid\datagrid.py:460: UserWarning: Index name of 'index' is not round-trippable. schema = pd.io.json.build_table_schema(dataframe) C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\graphics_features_base.py:34: UserWarning: converting float64 array to float32 warn(f"converting {array.dtype} array to float32") '''

3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters? I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image. In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params

4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.

And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].

I apologize for a lot of basic question and If you can help me I will appreciate. Looking forward your reply and I wanna to say that is great work! by the way i saw the PCA trace of the cell feature among time plot. but i do not see in this notebook. it will release in the future notebook?

— Reply to this email directly, view it on GitHub https://github.com/nel-lab/mesmerize-core/issues/240#issuecomment-1792711410, or unsubscribe https://github.com/notifications/unsubscribe-auth/ACHXXREFRPAGLJVCVMQZN63YCUI6DAVCNFSM6AAAAAA6ZC3NGGVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTOOJSG4YTCNBRGA . You are receiving this because you commented.Message ID: @.***>

kushalkolar commented 1 year ago

I forgot to fully get rid of the iw_means stuff, ignore it XD.

The notebooks will be in a better state by mid next week.

qweasdf1354 commented 12 months ago

Hi author, I am follow the instructions on the mesmerize-viz repo to install it. and I check is it already install the 'ipydatagrid' using pip install 'ipydatagrid'. the results is following

(mescore) PS C:\Windows\system32> pip install ipydatagrid Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/ Requirement already satisfied: ipydatagrid in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (1.2.0) Requirement already satisfied: bqplot>=0.11.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (0.12.42) Requirement already satisfied: ipywidgets<9,>=7.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (8.1.1) Requirement already satisfied: pandas>=1.3.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (2.1.2) Requirement already satisfied: py2vega>=0.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (0.6.1) Requirement already satisfied: traitlets>=4.3.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (5.13.0) Requirement already satisfied: traittypes>=0.0.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (0.2.1) Requirement already satisfied: numpy>=1.10.4 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (1.26.0) Requirement already satisfied: comm>=0.1.3 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (0.1.4) Requirement already satisfied: ipython>=6.1.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (8.17.2) Requirement already satisfied: widgetsnbextension~=4.0.9 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (4.0.9) Requirement already satisfied: jupyterlab-widgets~=3.0.9 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (3.0.9) Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2023.3.post1) Requirement already satisfied: tzdata>=2022.1 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2023.3) Requirement already satisfied: gast<0.5,>=0.4.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from py2vega>=0.5->ipydatagrid) (0.4.0) Requirement already satisfied: decorator in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (5.1.1) Requirement already satisfied: jedi>=0.16 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.19.1) Requirement already satisfied: matplotlib-inline in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.1.6) Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (3.0.39) Requirement already satisfied: pygments>=2.4.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.16.1) Requirement already satisfied: stack-data in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.6.2) Requirement already satisfied: exceptiongroup in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (1.1.3) Requirement already satisfied: colorama in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.4.6) Requirement already satisfied: six>=1.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from python-dateutil>=2.8.2->pandas>=1.3.5->ipydatagrid) (1.16.0) Requirement already satisfied: parso<0.9.0,>=0.8.3 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.8.3) Requirement already satisfied: wcwidth in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.2.9) Requirement already satisfied: executing>=1.2.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.0.1) Requirement already satisfied: asttokens>=2.1.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.4.1) Requirement already satisfied: pure-eval in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.2.2)

I am looking forward the next generation of notebooks!

kushalkolar commented 12 months ago

Did you restart the jupyter server, i.e. not just restarting the kernel but fully shutting down jupyter lab and starting it up again from your terminal/conda prompt with jupyter lab.

In general installing/updating/changing any jupyter widget libraries (ipywidgets, ipydatagrid, ipy-anything pretty much) you have to restart the jupyter server, it's not sufficient to just restart the kernel.

qweasdf1354 commented 12 months ago

I restrat the anaconda powershell and there are not change in the error

Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered

by the way is it the mamba activate mescore process may produce this error? when i use mamban activate there is error and i have to use conda to activate this env

**(base) PS C:\Windows\system32> mamba activate mescore

C:\Windows\system32>set MKL_NUM_THREADS=1

C:\Windows\system32>set OPENBLAS_NUM_THREADS=1**

(base) PS C:\Windows\system32> conda activate mescore

qweasdf1354 commented 12 months ago

Hi author I use the record function button, but where can i found the record results?

kushalkolar commented 12 months ago

What if you try to install ipydatagrid from conda instead of pip:

mamba install -c conda-forge ipydatagrid

I restrat the anaconda powershell and there are not change in the error

Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered

by the way is it the mamba activate mescore process may produce this error? when i use mamban activate there is error and i have to use conda to activate this env

**(base) PS C:\Windows\system32> mamba activate mescore

C:\Windows\system32>set MKL_NUM_THREADS=1

C:\Windows\system32>set OPENBLAS_NUM_THREADS=1**

(base) PS C:\Windows\system32> conda activate mescore

If you are using conda, I belive you have to use conda activate. mamba activate in conda produces weirdness as far as I know, @pgunn any thoughts?

Hi author I use the record function button, but where can i found the record results?

It should be in the same dir as the notebook with a timestamp as the filename.

pgunn commented 12 months ago

When mamba says to use mamba activate, use conda activate instead; I believe it's a bug in some of the conda libraries that mamba uses that they get the name of the program they're being called by and use that to build that string to tell the user what to do, not realising that separate tools to build versus activate an environment would eventually be a thing.

qweasdf1354 commented 12 months ago

Hi, kushalkolar I use the cmd to activate mescore using mamba and using cmd to 'mamba install -c conda-forge ipydatagrid' in the mescore environment.

folloing were the process and detail

C:\Users\zhouys>mamba activate mescore

C:\Users\zhouys>set MKL_NUM_THREADS=1

C:\Users\zhouys>set OPENBLAS_NUM_THREADS=1

(mescore) C:\Users\zhouys>mamba install -c conda-forge ipydatagrid

Looking for: ['ipydatagrid']

anaconda/pkgs/main/win-64 No change anaconda/pkgs/r/win-64 No change conda-forge/win-64 No change conda-forge/noarch No change anaconda/pkgs/main/noarch No change anaconda/pkgs/r/noarch No change anaconda/pkgs/msys2/win-64 No change anaconda/pkgs/msys2/noarch No change

Pinned packages:

Transaction

Prefix: C:\Users\zhouys\anaconda3\envs\mescore

All requested packages already installed

(mescore) C:\Users\zhouys>

However there is still a error when i 'viz = df.mcorr.viz() viz.show()'

[Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703)

I restart the cmd and not work too

qweasdf1354 commented 12 months ago

and when i use the record buttom there is not show the saved file. Is it something usage method i havent got? or something i am doing is wrong?

pgunn commented 12 months ago

Please do a conda env list and send us the result

qweasdf1354 commented 12 months ago

Hi pgunn, (mescore) C:\Users\zhouys>conda env list

conda environments:

# base C:\Users\zhouys\anaconda3 analysis C:\Users\zhouys\anaconda3\envs\analysis caiman C:\Users\zhouys\anaconda3\envs\caiman cell C:\Users\zhouys\anaconda3\envs\cell cellpose C:\Users\zhouys\anaconda3\envs\cellpose deepcadrt C:\Users\zhouys\anaconda3\envs\deepcadrt dlc C:\Users\zhouys\anaconda3\envs\dlc mescore * C:\Users\zhouys\anaconda3\envs\mescore simba C:\Users\zhouys\anaconda3\envs\simba sleap C:\Users\zhouys\anaconda3\envs\sleap suite2p C:\Users\zhouys\anaconda3\envs\suite2p trace C:\Users\zhouys\anaconda3\envs\trace

pgunn commented 12 months ago

And in that environment, please do a conda list

and send us the result

qweasdf1354 commented 12 months ago

(mescore) C:\Users\zhouys>conda list

packages in environment at C:\Users\zhouys\anaconda3\envs\mescore:

#

Name Version Build Channel

_tflow_select 2.3.0 mkl defaults absl-py 2.0.0 pyhd8ed1ab_0 conda-forge aiohttp 3.8.6 py310h8d17308_1 conda-forge aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge anyio 4.0.0 pyhd8ed1ab_0 conda-forge aom 3.5.0 h63175ca_0 conda-forge argon2-cffi 23.1.0 pyhd8ed1ab_0 conda-forge argon2-cffi-bindings 21.2.0 py310h8d17308_4 conda-forge arrow 1.3.0 pyhd8ed1ab_0 conda-forge asttokens 2.4.1 pyhd8ed1ab_0 conda-forge astunparse 1.6.3 pyhd8ed1ab_0 conda-forge async-lru 2.0.4 pyhd8ed1ab_0 conda-forge async-timeout 4.0.3 pyhd8ed1ab_0 conda-forge attrs 23.1.0 pyh71513ae_1 conda-forge av 10.0.0 py310hef11e44_4 conda-forge babel 2.13.1 pyhd8ed1ab_0 conda-forge backports 1.0 pyhd8ed1ab_3 conda-forge backports.functools_lru_cache 1.6.5 pyhd8ed1ab_0 conda-forge beautifulsoup4 4.12.2 pyha770c72_0 conda-forge bleach 6.1.0 pyhd8ed1ab_0 conda-forge blinker 1.7.0 pyhd8ed1ab_0 conda-forge blosc 1.21.5 hdccc3a2_0 conda-forge bokeh 3.3.0 pyhd8ed1ab_0 conda-forge bqplot 0.12.42 pypi_0 pypi brotli 1.1.0 hcfcfb64_1 conda-forge brotli-bin 1.1.0 hcfcfb64_1 conda-forge brotli-python 1.1.0 py310h00ffb61_1 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge c-ares 1.21.0 hcfcfb64_0 conda-forge ca-certificates 2023.7.22 h56e8100_0 conda-forge cached-property 1.5.2 hd8ed1ab_1 conda-forge cached_property 1.5.2 pyha770c72_1 conda-forge cachetools 5.3.2 pyhd8ed1ab_0 conda-forge caiman 1.9.16 py310h00ffb61_0 conda-forge certifi 2023.7.22 pyhd8ed1ab_0 conda-forge cffi 1.16.0 py310h8d17308_0 conda-forge charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge click 8.1.7 win_pyh7428d3b_0 conda-forge cloudpickle 3.0.0 pyhd8ed1ab_0 conda-forge colorama 0.4.6 pyhd8ed1ab_0 conda-forge colorcet 3.0.1 pyhd8ed1ab_0 conda-forge comm 0.1.4 pyhd8ed1ab_0 conda-forge contourpy 1.1.1 py310h232114e_1 conda-forge cryptography 39.0.0 py310h52f42fa_0 conda-forge cycler 0.12.1 pyhd8ed1ab_0 conda-forge cytoolz 0.12.2 py310h8d17308_1 conda-forge dask-core 2023.10.1 pyhd8ed1ab_0 conda-forge dav1d 1.2.0 hcfcfb64_0 conda-forge debugpy 1.8.0 py310h00ffb61_1 conda-forge decorator 5.1.1 pyhd8ed1ab_0 conda-forge defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge eigen 3.4.0 h91493d7_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge exceptiongroup 1.1.3 pyhd8ed1ab_0 conda-forge executing 2.0.1 pyhd8ed1ab_0 conda-forge expat 2.5.0 h63175ca_1 conda-forge fastplotlib 0.1.0a15 pypi_0 pypi ffmpeg 6.0.0 gpl_h3a5b8a7_100 conda-forge flatbuffers 23.5.26 h63175ca_1 conda-forge font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge font-ttf-inconsolata 3.000 h77eed37_0 conda-forge font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge font-ttf-ubuntu 0.83 hab24e00_0 conda-forge fontconfig 2.14.2 hbde0cde_0 conda-forge fonts-conda-ecosystem 1 0 conda-forge fonts-conda-forge 1 0 conda-forge fonttools 4.43.1 py310h8d17308_0 conda-forge fqdn 1.5.1 pyhd8ed1ab_0 conda-forge freetype 2.12.1 hdaf720e_2 conda-forge freetype-py 2.4.0 pypi_0 pypi frozenlist 1.4.0 py310h8d17308_1 conda-forge fsspec 2023.10.0 pyhca7485f_0 conda-forge future 0.18.3 pyhd8ed1ab_0 conda-forge gast 0.4.0 pyh9f0ad1d_0 conda-forge gettext 0.21.1 h5728263_0 conda-forge giflib 5.2.1 h64bf75a_3 conda-forge glib 2.78.0 h12be248_0 conda-forge glib-tools 2.78.0 h12be248_0 conda-forge google-auth 2.23.4 pyhca7485f_0 conda-forge google-auth-oauthlib 0.4.6 pyhd8ed1ab_0 conda-forge google-pasta 0.2.0 pyh8c360ce_0 conda-forge grpc-cpp 1.48.1 hcb02dd0_1 conda-forge grpcio 1.48.1 py310h1177ea7_1 conda-forge gst-plugins-base 1.18.5 he07aa86_3 conda-forge gstreamer 1.18.5 hdff456e_3 conda-forge h5py 3.9.0 nompi_py310h727aef9_100 conda-forge hdf5 1.14.0 nompi_h97a5375_103 conda-forge hdmf 3.11.0 pyh1ea47a8_0 conda-forge holoviews 1.18.0 pyhd8ed1ab_0 conda-forge icu 58.2 ha925a31_3 defaults idna 3.4 pyhd8ed1ab_0 conda-forge imagecodecs-lite 2019.12.3 py310h3e78b6c_7 conda-forge imageio 2.31.5 pyh8c1a49c_0 conda-forge importlib-metadata 6.8.0 pyha770c72_0 conda-forge importlib_metadata 6.8.0 hd8ed1ab_0 conda-forge importlib_resources 6.1.0 pyhd8ed1ab_0 conda-forge iniconfig 2.0.0 pyhd8ed1ab_0 conda-forge intel-openmp 2023.2.0 h57928b3_50497 conda-forge ipydatagrid 1.2.0 pyhd8ed1ab_0 conda-forge ipykernel 6.26.0 pyha63f2e9_0 conda-forge ipyparallel 8.6.1 pyhd8ed1ab_0 conda-forge ipython 8.17.2 pyh5737063_0 conda-forge ipython_genutils 0.2.0 py_1 conda-forge ipywidgets 8.1.1 pyhd8ed1ab_0 conda-forge isoduration 20.11.0 pyhd8ed1ab_0 conda-forge jedi 0.19.1 pyhd8ed1ab_0 conda-forge jinja2 3.1.2 pyhd8ed1ab_1 conda-forge joblib 1.3.2 pyhd8ed1ab_0 conda-forge jpeg 9e hcfcfb64_3 conda-forge json5 0.9.14 pyhd8ed1ab_0 conda-forge jsonpointer 2.4 py310h5588dad_3 conda-forge jsonschema 4.19.2 pyhd8ed1ab_0 conda-forge jsonschema-specifications 2023.7.1 pyhd8ed1ab_0 conda-forge jsonschema-with-format-nongpl 4.19.2 pyhd8ed1ab_0 conda-forge jupyter 1.0.0 pyhd8ed1ab_10 conda-forge jupyter-lsp 2.2.0 pyhd8ed1ab_0 conda-forge jupyter-rfb 0.4.1 pypi_0 pypi jupyter_bokeh 2.0.4 pyhd8ed1ab_0 conda-forge jupyter_client 8.5.0 pyhd8ed1ab_0 conda-forge jupyter_console 6.6.3 pyhd8ed1ab_0 conda-forge jupyter_core 5.5.0 py310h5588dad_0 conda-forge jupyter_events 0.8.0 pyhd8ed1ab_0 conda-forge jupyter_server 2.9.1 pyhd8ed1ab_0 conda-forge jupyter_server_terminals 0.4.4 pyhd8ed1ab_1 conda-forge jupyterlab 4.0.8 pyhd8ed1ab_0 conda-forge jupyterlab_pygments 0.2.2 pyhd8ed1ab_0 conda-forge jupyterlab_server 2.25.0 pyhd8ed1ab_0 conda-forge jupyterlab_widgets 3.0.9 pyhd8ed1ab_0 conda-forge keras 2.10.0 pyhd8ed1ab_0 conda-forge kiwisolver 1.4.5 py310h232114e_1 conda-forge krb5 1.20.1 h6609f42_0 conda-forge lazy_loader 0.3 pyhd8ed1ab_0 conda-forge lcms2 2.15 ha5c8aab_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libabseil 20220623.0 cxx17_h1a56200_6 conda-forge libaec 1.1.2 h63175ca_1 conda-forge libblas 3.9.0 19_win64_mkl conda-forge libbrotlicommon 1.1.0 hcfcfb64_1 conda-forge libbrotlidec 1.1.0 hcfcfb64_1 conda-forge libbrotlienc 1.1.0 hcfcfb64_1 conda-forge libcblas 3.9.0 19_win64_mkl conda-forge libclang 14.0.6 default_h77d9078_1 conda-forge libclang13 14.0.6 default_h77d9078_1 conda-forge libcurl 8.1.2 h68f0423_0 conda-forge libdeflate 1.17 hcfcfb64_0 conda-forge libexpat 2.5.0 h63175ca_1 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libglib 2.78.0 he8f3873_0 conda-forge libhwloc 2.9.1 h51c2c0f_0 conda-forge libiconv 1.17 h8ffe710_0 conda-forge liblapack 3.9.0 19_win64_mkl conda-forge libogg 1.3.4 h8ffe710_1 conda-forge libopus 1.3.1 h8ffe710_1 conda-forge libpng 1.6.39 h19919ed_0 conda-forge libpq 12.15 hb652d5d_1 defaults libprotobuf 3.20.3 h12be248_0 conda-forge libsodium 1.0.18 h8d14728_1 conda-forge libsqlite 3.44.0 hcfcfb64_0 conda-forge libssh2 1.10.0 h680486a_3 conda-forge libtiff 4.5.0 hf8721a0_2 conda-forge libvorbis 1.3.7 h0e60522_0 conda-forge libwebp 1.3.2 hcfcfb64_1 conda-forge libwebp-base 1.3.2 hcfcfb64_0 conda-forge libxcb 1.13 hcd874cb_1004 conda-forge libxml2 2.10.4 hc3477c8_0 conda-forge libxslt 1.1.37 h0192164_0 conda-forge libzlib 1.2.13 hcfcfb64_5 conda-forge linkify-it-py 2.0.0 pyhd8ed1ab_0 conda-forge llvmlite 0.41.1 pypi_0 pypi locket 1.0.0 pyhd8ed1ab_0 conda-forge lz4-c 1.9.4 hcfcfb64_0 conda-forge m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge markdown 3.5.1 pyhd8ed1ab_0 conda-forge markdown-it-py 3.0.0 pyhd8ed1ab_0 conda-forge markupsafe 2.1.3 py310h8d17308_1 conda-forge matplotlib 3.8.1 py310h5588dad_0 conda-forge matplotlib-base 3.8.1 py310hc9baf74_0 conda-forge matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge mdit-py-plugins 0.4.0 pyhd8ed1ab_0 conda-forge mdurl 0.1.0 pyhd8ed1ab_0 conda-forge mesmerize-core 0.3.0 pyhd8ed1ab_0 conda-forge mesmerize-viz 0.1.0b1 dev_0 mistune 3.0.2 pyhd8ed1ab_0 conda-forge mkl 2023.2.0 h6a75c08_50496 conda-forge msys2-conda-epoch 20160418 1 conda-forge multidict 6.0.4 py310h8d17308_1 conda-forge munkres 1.1.4 pyh9f0ad1d_0 conda-forge mypy 1.6.1 py310h8d17308_0 conda-forge mypy_extensions 1.0.0 pyha770c72_0 conda-forge nbclient 0.7.4 pypi_0 pypi nbconvert 7.10.0 pyhd8ed1ab_0 conda-forge nbconvert-core 7.10.0 pyhd8ed1ab_0 conda-forge nbconvert-pandoc 7.10.0 pyhd8ed1ab_0 conda-forge nbformat 5.9.2 pyhd8ed1ab_0 conda-forge nest-asyncio 1.5.8 pyhd8ed1ab_0 conda-forge networkx 3.2.1 pyhd8ed1ab_0 conda-forge nose 1.3.7 py_1006 conda-forge notebook 7.0.6 pyhd8ed1ab_0 conda-forge notebook-shim 0.2.3 pyhd8ed1ab_0 conda-forge numba 0.58.1 pypi_0 pypi numpy 1.26.0 py310hf667824_0 conda-forge oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge opencv 4.6.0 py310ha7641e4_2 defaults openh264 2.3.1 h63175ca_2 conda-forge openjpeg 2.5.0 ha2aaf27_2 conda-forge openssl 1.1.1w hcfcfb64_0 conda-forge opt_einsum 3.3.0 pyhc1e730c_2 conda-forge overrides 7.4.0 pyhd8ed1ab_0 conda-forge packaging 23.2 pyhd8ed1ab_0 conda-forge pandas 2.1.2 py310hecd3228_0 conda-forge pandoc 3.1.3 h57928b3_0 conda-forge pandocfilters 1.5.0 pyhd8ed1ab_0 conda-forge panel 1.3.1 pyhd8ed1ab_0 conda-forge param 2.0.0 pyhca7485f_0 conda-forge parso 0.8.3 pyhd8ed1ab_0 conda-forge partd 1.4.1 pyhd8ed1ab_0 conda-forge pcre2 10.40 h17e33f8_0 conda-forge peakutils 1.3.4 pyhd8ed1ab_0 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 9.4.0 py310hdbb7713_1 conda-forge pims 0.6.1 pyhd8ed1ab_1 conda-forge pip 23.3.1 pyhd8ed1ab_0 conda-forge pkgutil-resolve-name 1.3.10 pyhd8ed1ab_1 conda-forge platformdirs 3.11.0 pyhd8ed1ab_0 conda-forge pluggy 1.3.0 pyhd8ed1ab_0 conda-forge prometheus_client 0.18.0 pyhd8ed1ab_0 conda-forge prompt-toolkit 3.0.39 pyha770c72_0 conda-forge prompt_toolkit 3.0.39 hd8ed1ab_0 conda-forge protobuf 3.20.3 py310h5588dad_1 conda-forge psutil 5.9.5 py310h8d17308_1 conda-forge pthread-stubs 0.4 hcd874cb_1001 conda-forge pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge pure_eval 0.2.2 pyhd8ed1ab_0 conda-forge py2vega 0.6.1 pyhd8ed1ab_0 conda-forge pyasn1 0.5.0 pyhd8ed1ab_0 conda-forge pyasn1-modules 0.3.0 pyhd8ed1ab_0 conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pyct 0.4.6 py_0 conda-forge pyct-core 0.4.6 py_0 conda-forge pygfx 0.1.15 pypi_0 pypi pygments 2.16.1 pyhd8ed1ab_0 conda-forge pyjwt 2.8.0 pyhd8ed1ab_0 conda-forge pylinalg 0.4.1 pypi_0 pypi pynwb 2.5.0 pyh267d04e_0 conda-forge pyopenssl 23.2.0 pyhd8ed1ab_1 conda-forge pyparsing 3.1.1 pyhd8ed1ab_0 conda-forge pyqt 5.15.4 py310h8a704f9_0 conda-forge pyqt5-sip 12.9.0 py310h8a704f9_0 conda-forge pyqt6 6.6.0 pypi_0 pypi pyqt6-qt6 6.6.0 pypi_0 pypi pyqt6-sip 13.6.0 pypi_0 pypi pyqtgraph 0.13.3 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyh0701188_6 conda-forge pytest 7.4.3 pyhd8ed1ab_0 conda-forge python 3.10.8 h0269646_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-fastjsonschema 2.18.1 pyhd8ed1ab_0 conda-forge python-flatbuffers 23.5.26 pyhd8ed1ab_0 conda-forge python-json-logger 2.0.7 pyhd8ed1ab_0 conda-forge python-tzdata 2023.3 pyhd8ed1ab_0 conda-forge python_abi 3.10 4_cp310 conda-forge pytz 2023.3.post1 pyhd8ed1ab_0 conda-forge pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge pyviz_comms 3.0.0 pyhd8ed1ab_0 conda-forge pywavelets 1.4.1 py310h3e78b6c_1 conda-forge pywin32 306 py310h00ffb61_2 conda-forge pywinpty 2.0.12 py310h00ffb61_0 conda-forge pyyaml 6.0.1 py310h8d17308_1 conda-forge pyzmq 25.1.1 py310h2849c00_2 conda-forge qt-main 5.15.2 h6072711_9 defaults qt-webengine 5.15.9 h5bd16bc_7 defaults qtconsole-base 5.4.4 pyha770c72_0 conda-forge qtpy 2.4.1 pyhd8ed1ab_0 conda-forge qtwebkit 5.212 h2bbfb41_5 defaults re2 2022.06.01 h0e60522_1 conda-forge referencing 0.30.2 pyhd8ed1ab_0 conda-forge requests 2.31.0 pyhd8ed1ab_0 conda-forge requests-oauthlib 1.3.1 pyhd8ed1ab_0 conda-forge rfc3339-validator 0.1.4 pyhd8ed1ab_0 conda-forge rfc3986-validator 0.1.1 pyh9f0ad1d_0 conda-forge rpds-py 0.10.6 py310h87d50f1_0 conda-forge rsa 4.9 pyhd8ed1ab_0 conda-forge ruamel.yaml 0.18.4 py310h8d17308_0 conda-forge ruamel.yaml.clib 0.2.7 py310h8d17308_2 conda-forge scikit-image 0.20.0 py310h1c4a608_1 conda-forge scikit-learn 1.3.2 py310hfd2573f_1 conda-forge scipy 1.11.3 py310hf667824_1 conda-forge send2trash 1.8.2 pyh08f2357_0 conda-forge setuptools 68.2.2 pyhd8ed1ab_0 conda-forge sidecar 0.7.0 pypi_0 pypi simplejpeg 1.7.2 pypi_0 pypi sip 6.5.1 py310h8a704f9_2 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge slicerator 1.1.0 pyhd8ed1ab_0 conda-forge snappy 1.1.10 hfb803bf_0 conda-forge sniffio 1.3.0 pyhd8ed1ab_0 conda-forge soupsieve 2.5 pyhd8ed1ab_1 conda-forge sqlite 3.44.0 hcfcfb64_0 conda-forge stack_data 0.6.2 pyhd8ed1ab_0 conda-forge svt-av1 1.5.0 h63175ca_0 conda-forge tbb 2021.9.0 h91493d7_0 conda-forge tensorboard 2.10.1 pyhd8ed1ab_0 conda-forge tensorboard-data-server 0.6.1 py310h5588dad_4 conda-forge tensorboard-plugin-wit 1.8.1 pyhd8ed1ab_0 conda-forge tensorflow 2.10.0 mkl_py310hd99672f_0 defaults tensorflow-base 2.10.0 mkl_py310h6a7f48e_0 defaults tensorflow-estimator 2.10.0 py310haa95532_0 defaults termcolor 2.3.0 pyhd8ed1ab_0 conda-forge terminado 0.17.0 pyh08f2357_0 conda-forge threadpoolctl 3.2.0 pyha21a80b_0 conda-forge tifffile 2020.6.3 py_0 conda-forge tinycss2 1.2.1 pyhd8ed1ab_0 conda-forge tk 8.6.13 hcfcfb64_0 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge tomli 2.0.1 pyhd8ed1ab_0 conda-forge toolz 0.12.0 pyhd8ed1ab_0 conda-forge tornado 6.3.3 py310h8d17308_1 conda-forge tqdm 4.66.1 pyhd8ed1ab_0 conda-forge traitlets 5.13.0 pyhd8ed1ab_0 conda-forge traittypes 0.2.1 pyh9f0ad1d_2 conda-forge tslearn 0.6.2 pypi_0 pypi types-python-dateutil 2.8.19.14 pyhd8ed1ab_0 conda-forge typing-extensions 4.8.0 hd8ed1ab_0 conda-forge typing_extensions 4.8.0 pyha770c72_0 conda-forge typing_utils 0.1.0 pyhd8ed1ab_0 conda-forge tzdata 2023c h71feb2d_0 conda-forge uc-micro-py 1.0.1 pyhd8ed1ab_0 conda-forge ucrt 10.0.22621.0 h57928b3_0 conda-forge uharfbuzz 0.37.3 pypi_0 pypi unicodedata2 15.1.0 py310h8d17308_0 conda-forge uri-template 1.3.0 pyhd8ed1ab_0 conda-forge urllib3 2.0.7 pyhd8ed1ab_0 conda-forge vc 14.3 h64f974e_17 conda-forge vc14_runtime 14.36.32532 hdcecf7f_17 conda-forge voila 0.5.5 pypi_0 pypi vs2015_runtime 14.36.32532 h05e6639_17 conda-forge wcwidth 0.2.9 pyhd8ed1ab_0 conda-forge webcolors 1.13 pyhd8ed1ab_0 conda-forge webencodings 0.5.1 pyhd8ed1ab_2 conda-forge websocket-client 1.6.4 pyhd8ed1ab_0 conda-forge websockets 12.0 pypi_0 pypi werkzeug 3.0.1 pyhd8ed1ab_0 conda-forge wgpu 0.11.0 pypi_0 pypi wheel 0.41.3 pyhd8ed1ab_0 conda-forge widgetsnbextension 4.0.9 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge winpty 0.4.3 4 conda-forge wrapt 1.15.0 py310h8d17308_1 conda-forge x264 1!164.3095 h8ffe710_2 conda-forge x265 3.5 h2d74725_3 conda-forge xorg-libxau 1.0.11 hcd874cb_0 conda-forge xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge xyzservices 2023.10.1 pyhd8ed1ab_0 conda-forge xz 5.2.6 h8d14728_0 conda-forge yaml 0.2.5 h8ffe710_2 conda-forge yarl 1.9.2 py310h8d17308_1 conda-forge z5py 2.0.17 py310h6549c5b_0 conda-forge zeromq 4.3.5 h63175ca_0 conda-forge zipp 3.17.0 pyhd8ed1ab_0 conda-forge zlib 1.2.13 hcfcfb64_5 conda-forge zstd 1.5.5 h12be248_0 conda-forge

qweasdf1354 commented 12 months ago

Hi, author, sorry to bother you i have encounter some new questions. i can got the temperal data using the temporal_good function. however, it is not DeltaF/F in the cnmf. i notice that it is different to the common definition of the DeltaF/F in cnmf. how can i got the DeltaF/F results?

kushalkolar commented 12 months ago

Were you able to get ipydatagrid working? Are you in jupyterlab and not jupyter notebook? I'd try updating to the latest jupyterlab and latest ipywidgets.

For dfof you first need to run it: https://mesmerize-core.readthedocs.io/en/latest/api/cnmf.html#mesmerize_core.CNMFExtensions.run_detrend_dfof

qweasdf1354 commented 12 months ago

sorry i am use the jupyter notebook

kushalkolar commented 12 months ago

That might explain it, install jupyterlab and try it in there :D

qweasdf1354 commented 12 months ago

thanks i will try it soon

qweasdf1354 commented 12 months ago

Hi author, when i using the jupyter lab the original problem is resolved however the record buttum is remain problem

the following is the log

Traceback (most recent call last): File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py", line 179, in record_plot self.plot.record_start( File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_record_mixin.py", line 208, in record_start self._video_writer.start() File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\context.py", line 336, in _Popen return Popen(process_obj) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\popen_spawn_win32.py", line 93, in init reduction.dump(process_obj, to_child) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) File "", line 2, in av.container.output.OutputContainer.__reduce_cython TypeError: no default reduce due to non-trivial cinit__ 10:18:57

TypeError Traceback (most recent call last) File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:179, in IpywidgetToolBar.record_plot(self, obj) 178 try: --> 179 self.plot.recordstart( 180 f"./{datetime.now().isoformat(timespec='seconds').replace(':', '')}.mp4" 181 ) 182 except Exception:

File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_record_mixin.py:208, in RecordMixin.record_start(self, path, fps, codec, pixel_format, options) 207 # start writer process --> 208 self._video_writer.start() 210 # 1.3 seems to work well to reduce that difference between playback time and recording time 211 # will properly investigate later

File ~\anaconda3\envs\mescore\lib\multiprocessing\process.py:121, in BaseProcess.start(self) 120 _cleanup() --> 121 self._popen = self._Popen(self) 122 self._sentinel = self._popen.sentinel

File ~\anaconda3\envs\mescore\lib\multiprocessing\context.py:224, in Process._Popen(process_obj) 222 @staticmethod 223 def _Popen(process_obj): --> 224 return _default_context.get_context().Process._Popen(process_obj)

File ~\anaconda3\envs\mescore\lib\multiprocessing\context.py:336, in SpawnProcess._Popen(process_obj) 335 from .popen_spawn_win32 import Popen --> 336 return Popen(process_obj)

File ~\anaconda3\envs\mescore\lib\multiprocessing\popen_spawn_win32.py:93, in Popen.init(self, process_obj) 92 reduction.dump(prep_data, to_child) ---> 93 reduction.dump(process_obj, to_child) 94 finally:

File ~\anaconda3\envs\mescore\lib\multiprocessing\reduction.py:60, in dump(obj, file, protocol) 59 '''Replacement for pickle.dump() using ForkingPickler.''' ---> 60 ForkingPickler(file, protocol).dump(obj)

File :2, in av.container.output.OutputContainer.__reduce_cython__()

TypeError: no default reduce due to non-trivial cinit

During handling of the above exception, another exception occurred:

AssertionError Traceback (most recent call last) File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:773, in Widget._handle_msg(self, msg) 771 if 'buffer_paths' in data: 772 _put_buffers(state, data['buffer_paths'], msg['buffers']) --> 773 self.set_state(state) 775 # Handle a state request. 776 elif method == 'request_state':

File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:650, in Widget.set_state(self, sync_data) 645 self._send(msg, buffers=echo_buffers) 647 # The order of these context managers is important. Properties must 648 # be locked when the hold_trait_notification context manager is 649 # released and notifications are fired. --> 650 with self._lock_property(**sync_data), self.hold_trait_notifications(): 651 for name in sync_data: 652 if name in self.keys:

File ~\anaconda3\envs\mescore\lib\contextlib.py:142, in _GeneratorContextManager.exit(self, typ, value, traceback) 140 if typ is None: 141 try: --> 142 next(self.gen) 143 except StopIteration: 144 return False

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1512, in HasTraits.hold_trait_notifications(self) 1510 for changes in cache.values(): 1511 for change in changes: -> 1512 self.notify_change(change)

File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:701, in Widget.notify_change(self, change) 698 if name in self.keys and self._should_send_property(name, getattr(self, name)): 699 # Send new state to front-end 700 self.send_state(key=name) --> 701 super().notify_change(change)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1527, in HasTraits.notify_change(self, change) 1525 def notify_change(self, change: Bunch) -> None: 1526 """Notify observers of a change event""" -> 1527 return self._notify_observers(change)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1570, in HasTraits._notify_observers(self, event) 1567 elif isinstance(c, EventHandler) and c.name is not None: 1568 c = getattr(self, c.name) -> 1570 c(event)

File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:184, in IpywidgetToolBar.record_plot(self, obj) 182 except Exception: 183 traceback.print_exc() --> 184 self._record_button.value = False 185 else: 186 self.plot.record_stop()

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:718, in TraitType.set(self, obj, value) 716 raise TraitError('The "%s" trait is read-only.' % self.name) 717 else: --> 718 self.set(obj, value)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:707, in TraitType.set(self, obj, value) 703 silent = False 704 if silent is not True: 705 # we explicitly compare silent to True just in case the equality 706 # comparison above returns something other than True/False --> 707 obj._notify_trait(self.name, old_value, new_value)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1515, in HasTraits._notify_trait(self, name, old_value, new_value) 1514 def _notify_trait(self, name: str, old_value: t.Any, new_value: t.Any) -> None: -> 1515 self.notify_change( 1516 Bunch( 1517 name=name, 1518 old=old_value, 1519 new=new_value, 1520 owner=self, 1521 type="change", 1522 ) 1523 )

File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:701, in Widget.notify_change(self, change) 698 if name in self.keys and self._should_send_property(name, getattr(self, name)): 699 # Send new state to front-end 700 self.send_state(key=name) --> 701 super().notify_change(change)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1527, in HasTraits.notify_change(self, change) 1525 def notify_change(self, change: Bunch) -> None: 1526 """Notify observers of a change event""" -> 1527 return self._notify_observers(change)

File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1570, in HasTraits._notify_observers(self, event) 1567 elif isinstance(c, EventHandler) and c.name is not None: 1568 c = getattr(self, c.name) -> 1570 c(event)

File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:186, in IpywidgetToolBar.record_plot(self, obj) 184 self._record_button.value = False 185 else: --> 186 self.plot.record_stop()

File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_record_mixin.py:234, in RecordMixin.record_stop(self) 231 self._video_writer_queue.put(None) 233 # wait for writer to finish --> 234 self._video_writer.join(timeout=5) 236 self._video_writer = None 238 # so self._record() is no longer called on every render cycle

File ~\anaconda3\envs\mescore\lib\multiprocessing\process.py:148, in BaseProcess.join(self, timeout) 146 self._check_closed() 147 assert self._parent_pid == os.getpid(), 'can only join a child process' --> 148 assert self._popen is not None, 'can only join a started process' 149 res = self._popen.wait(timeout) 150 if res is not None:

AssertionError: can only join a started process

kushalkolar commented 12 months ago

Do you have pyav and ffmpeg installed?

qweasdf1354 commented 12 months ago

i install the ffmpeg early. although i can use ffmpeg to clip the video by cmd ffmpeg command, i am not sure i install the ffmpeg correctly and i never use pyav before

qweasdf1354 commented 12 months ago

I have got the df/f. thanks a lot kushalkolar! the software is a great work!

qweasdf1354 commented 12 months ago

the packgage in my mescore env have ffmpeg but pyav not find

kushalkolar commented 12 months ago

The fastplotlib record tool is in a primitive state and hasn't been tested on windows (which can be weird with ffmpeg and video stuff) so I would just use a screen recorder for now. This is generally a good screen recorder for windows: https://obsproject.com/

qweasdf1354 commented 12 months ago

I know OBS. This is a great tool and i use it to record animal behaviour previously. Are you mean recording the full screan instead of the user_interface? If that's what you mean, then I know what to do

kushalkolar commented 12 months ago

Yup you could record the full screen of the visualization or draw a box and record.

Right now we have several other priorities with fastplotlib, the recording is a "bonus" feature for now and it will be a few months before that feature gets ironed out.

qweasdf1354 commented 12 months ago

Hi, kushalkolar I appreciate to encounter the elegent tools for calcium extraction.

I would like to acknowledge your support in the acknowledgements section of my project which maybe accomplish recently. I believe that your assistance was instrumental in the progress and completion of our work.

Would you be comfortable with being mentioned in this context?

Thank you for considering this request, and please let me know your thoughts.

Best regards,

kushalkolar commented 12 months ago

That's nice to hear! For now you can cite our older mesmerize paper, I wonder if we'll do a preprint for the new stuff sometime: https://www.nature.com/articles/s41467-021-26550-y

Let us know if you need more help!

qweasdf1354 commented 12 months ago

Thanks a lot! I will cite the paper you mentioned and if preprint online please let me know. i will cite it all

kushalkolar commented 12 months ago

You should also cite the main algorithm papers (depending on which ones you're using) and the caiman paper:

caiman: https://elifesciences.org/articles/38173 motion correction: https://pubmed.ncbi.nlm.nih.gov/28782629/ CNMF (2p): https://pubmed.ncbi.nlm.nih.gov/26774160/ CNMFE (if you're using 1p): https://pubmed.ncbi.nlm.nih.gov/29469809/

kushalkolar commented 12 months ago

I just noticed you had more questions, answer below:

3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters?

Not sure what you mean here?

I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image.

The toolbar has buttons to auto scale, center the scene, etc. You can uncheck the auto-zoom or change the scale. See https://github.com/kushalkolar/mesmerize-viz#explore-components

In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params

You can color the contours based on evaluation metrics or display the accepted/rejected components. The components are accepted or rejeted based on the eval metrics (this is from caiman). See: https://github.com/kushalkolar/mesmerize-viz#visualize-component-evaluation-metrics

4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.

Yes, you can index a fastplotlib line collection like this:

contours_coordinates, centers_of_mass = df.iloc[index].cnmf.get_contours()

plot.add_line_collection(contours_coordinates, name="contours")

gray_ixs = np.array([1, 3, 5, 7])
red_ixs = np.array([2, 4, 6, 8])

plot["contours"][gray_ixs].colors = "gray"
plot["contours"][red_ixs].colors = "red"

And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].

I don't understand what you mean here sorry.

Our scipy talk is a good way to get familiar with fastplotlib: https://www.youtube.com/watch?v=Q-UJpAqljsU

Demo nbs from the talk: https://github.com/fastplotlib/fastplotlib-scipy2023

Note that the demo nbs are slightly out of date, the sidecar stuff is not necessary anymore (you can use show(sidecar=True) to display in sidecar).

qweasdf1354 commented 12 months ago

Thanks kushalkolar! almost everything is done and the previous unclear thing is clear right now. Thank you once again, and I'm amazed at having such a great tool. Looking forward your future work!

qweasdf1354 commented 12 months ago

Hi kushalkolar, i got a problem when i deal with my data. I have 4 tif file (5000,5000,5000,1000 frames) which is the same visual field and I wanna to detect cell across the 4 tif file. I mean the same cell will appear in the all tif. if there any method to identify the same cells? or use one contours to detect all 4 tif deltaF/F?

qweasdf1354 commented 12 months ago

and could i got the [Deconvolution and demixing of calcium imaging data]?

qweasdf1354 commented 12 months ago

it is support big tif format?

kushalkolar commented 12 months ago

Concatenating the tiff files is the easiest way to go as long as these aren't different sessions where the plane is slightly different or some cells that are in one file are not in the other. If that's the case you'll have to do multi-session registration with caiman.

If you want deconvolution, the spike estimates are in cnmf_obj.estimates.S. However I'd recommend looking at CASCADE which is better for deconvolution: https://github.com/HelmchenLabSoftware/Cascade

Yes caiman works with bigtiff.

qweasdf1354 commented 12 months ago

that is great! concatenating the tiff files is sufficient! Thanks a lot!

qweasdf1354 commented 12 months ago

Thank you. I've heard of CASCADE before, and I'll try CASCADE.

qweasdf1354 commented 12 months ago

Hi kushalkolar, sorry to bother you again. i use the folloing code to concate 4 tif file, but when i use mescore, the error occur

import tifffile as tf
import numpy as np

def concatenate_tiffs(tiff_paths, output_path):
    tiffs = [tf.imread(tiff_path) for tiff_path in tiff_paths]
    concatenated = np.vstack(tiffs)
    tf.imwrite(output_path, concatenated)

# Paths to your tiff files and desired output
input_files = [
    'CellVideo_0_E_20_Iter_6030_output.tif',
    'CellVideo_1_E_20_Iter_6030_output.tif',
    'CellVideo_2_E_20_Iter_6030_output.tif',
    'CellVideo_3_E_20_Iter_6030_output.tif'
]
output_file = 'Concatenated_output.tif'

# Concatenate and save
concatenate_tiffs(input_files, output_file)

# Inspect the resulting TIFF
def inspect_tiff(file_path):
    with tf.TiffFile(file_path) as tiff:
        image = tiff.asarray()
        print(f"File: {file_path}")
        print(f"Shape: {image.shape}")
        print(f"Data type: {image.dtype}\n")

inspect_tiff(output_file)

when i run df.iloc[0].caiman.run() in mocrr

the following error occur

Running 2b1d769e-a57d-4412-b5ab-628bfacbfbfa with local backend
starting mc
mc failed, stored traceback in output
<mesmerize_core.caiman_extensions.common.DummyProcess at 0x271a6cf69b0>

i check using the original tif is work.

kushalkolar commented 12 months ago

mc failed, stored traceback in output

The output will print the traceback, df.iloc[index].mcorr.get_output()

qweasdf1354 commented 12 months ago

Hi kushalkolar! the following is the error it seems the RAM is not enough. when i run the bigtif the total 32GB RAM is used and maybe the transition step have not enough RAM to go ahead. it maybe ok, i will try it in the more powerful workstation which have 512GB RAM.

`--------------------------------------------------------------------------- BatchItemUnsuccessfulError Traceback (most recent call last) Cell In[23], line 1 ----> 1 df.iloc[0].mcorr.get_output()

File ~\anaconda3\envs\mescore\lib\site-packages\mesmerize_core\caiman_extensions_utils.py:24, in validate..dec..wrapper(self, *args, *kwargs) 22 if not self._series["outputs"]["success"]: 23 tb = self._series["outputs"]["traceback"] ---> 24 raise BatchItemUnsuccessfulError(f"Batch item was unsuccessful, traceback from subprocess:\n{tb}") 25 return func(self, args, **kwargs)

BatchItemUnsuccessfulError: Batch item was unsuccessful, traceback from subprocess: multiprocessing.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 125, in worker result = (True, func(*args, kwds)) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 48, in mapstar return list(map(args)) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3116, in tile_and_correct_wrapper outv[:, idxs] = np.reshape( File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\numpy\core\fromnumeric.py", line 285, in reshape return _wrapfunc(a, 'reshape', newshape, order=order) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\numpy\core\fromnumeric.py", line 59, in _wrapfunc return bound(args, kwds) numpy.core._exceptions._ArrayMemoryError: Unable to allocate 1.31 GiB for an array with shape (1143, 512, 600) and data type float32 """

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\mesmerize_core\algorithms\mcorr.py", line 67, in run_algo mc.motion_correct(save_movie=True) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 252, in motion_correct self.motion_correct_pwrigid(template=template, save_movie=save_movie) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 366, in motion_correct_pwrigid _x_shifts_els, _y_shifts_els, _z_shifts_els, _coord_shifts_els = motion_correct_batch_pwrigid( File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3004, in motion_correct_batch_pwrigid fname_tot_els, res_el = motion_correction_piecewise(fname, splits, strides, overlaps, File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3194, in motion_correction_piecewise res = dview.map_async(tile_and_correct_wrapper, pars).get(4294967) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 774, in get raise self._value numpy.core._exceptions._ArrayMemoryError: Unable to allocate 1.31 GiB for an array with shape (1143, 512, 600) and data type float32`

qweasdf1354 commented 12 months ago

Hi kushalkolar! I use the workstation using ubuntu18.04 to run the code and i found the cpu utilization is high(almost 100%) however, after 2-3 min, the cpu utility is low is that normal?

`top - 23:18:34 up 3:26, 1 user, load average: 0.59, 0.34, 0.38 Tasks: 1594 total, 1 running, 884 sleeping, 0 stopped, 127 zombie %Cpu(s): 0.1 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 52798528+total, 43617897+free, 5901760 used, 85904544 buff/cache KiB Swap: 2097148 total, 2097148 free, 0 used. 51861302+avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3220 ps 20 0 12.874g 565596 131612 S 4.9 0.1 12:38.48 gnome-she+ 3075 root 20 0 26.619g 134668 102500 S 4.6 0.0 6:23.61 Xorg
4510 ps 20 0 823732 47432 31012 S 3.0 0.0 4:41.79 gnome-ter+ 22444 ps 20 0 47616 6036 3628 R 1.6 0.0 0:44.35 top
21449 ps 20 0 591372 156076 27164 S 1.3 0.0 0:32.52 jupyter-l+ 2534 root -51 0 0 0 0 S 1.0 0.0 2:02.04 irq/435-n+ 3242 ps 9 -11 2572872 17544 13872 S 1.0 0.0 0:51.22 pulseaudio 3676 ps 20 0 4868900 776820 291272 S 1.0 0.1 29:36.83 firefox
16029 ps 20 0 993340 175588 107888 S 1.0 0.0 1:05.60 software-+ 21182 ps 20 0 2844032 243596 102096 S 1.0 0.0 1:22.36 Isolated + 3551 ps 20 0 1137800 74176 59836 S 0.7 0.0 0:03.08 nautilus-+ 1 root 20 0 225768 9516 6740 S 0.3 0.0 0:15.60 systemd
11 root 20 0 0 0 0 I 0.3 0.0 0:04.67 rcu_sched
1223 root 20 0 0 0 0 S 0.3 0.0 0:01.49 jbd2/nvme+ 2170 avahi 20 0 47288 3836 3304 S 0.3 0.0 0:01.69 avahi-dae`

kushalkolar commented 12 months ago

What are you running?

qweasdf1354 commented 11 months ago

I run the mcorr using the caimam.run function and i found in windows it prompt the max threding in windows is 63 and there are 129 . so i using the ubuntu to run the code and there is normal and not error prompt. however after 1 or 2 minutes the utilitys of python processes disappear which the utility is almost 100%. and i stuck in starting mc near 1 hour and can not go to the next step and i shutt down the process. i notice there may be something unexpected. i use miniforege3 to using mamba.

qweasdf1354 commented 11 months ago

Hi kushalkolar! i am looking forward for your help. thanks a lot

I run the mcorr using the caimam.run function and i found in windows it prompt the max threding in windows is 63 and there are 129 . so i using the ubuntu to run the code and there is normal and not error prompt. however after 1 or 2 minutes the utilitys of python processes disappear which the utility is almost 100%. and i stuck in starting mc near 1 hour and can not go to the next step and i shutt down the process. i notice there may be something unexpected. i use miniforege3 to using mamba.

qweasdf1354 commented 11 months ago

i have not intall viz on ubuntu and i install this them. however i meet error i can not install pyqt6 in the mescore env. the following error occur

`pip install PyQt6 --index-url https://pypi.org/simple/ Looking in indexes: https://pypi.org/simple/ Collecting PyQt6 Using cached PyQt6-6.6.0.tar.gz (1.0 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... error error: subprocess-exited-with-error

× Preparing metadata (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [20 lines of output] Querying qmake about your Qt installation... Traceback (most recent call last): File "/home/ps/miniforge3/envs/mescore/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in main() File "/home/ps/miniforge3/envs/mescore/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ps/miniforge3/envs/mescore/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 152, in prepare_metadata_for_build_wheel whl_basename = backend.build_wheel(metadata_directory, config_settings) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-xeavatqa/overlay/lib/python3.11/site-packages/sipbuild/api.py", line 46, in build_wheel project = AbstractProject.bootstrap('wheel', ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/pip-build-env-xeavatqa/overlay/lib/python3.11/site-packages/sipbuild/abstract_project.py", line 87, in bootstrap project.setup(pyproject, tool, tool_description) File "/tmp/pip-build-env-xeavatqa/overlay/lib/python3.11/site-packages/sipbuild/project.py", line 602, in setup self.update(tool) File "/tmp/pip-install-t4a9rybh/pyqt6_085b72a7bd0d446a80c2ab8321c31d1d/project.py", line 163, in update raise UserException( sipbuild.exceptions.UserException [end of output]

note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

× Encountered error while generating package metadata. ╰─> See above for output.

note: This is an issue with the package mentioned above, not pip. hint: See above for details. `