Closed qweasdf1354 closed 11 months ago
Hi, thanks for posting the traceback! We just did a new release of fastplotlib yesterday, the vmin vmax sliders have been removed in favor of a histogram widget: https://github.com/fastplotlib/fastplotlib/pull/344
You can just remove that argument.
We will update the notebooks soon.
thanks a lot
Hi author, today i saw you update the notebook. I try it. that is great! but i still meet some problem i can not resolve by myself. so i try to ask for help.
1.when i run the cell below 'Modify the window_funcs at any time.'
''' iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True)
for g in iw_means.managed_graphics: g.cmap.vmax = 200 '''
the following error occur
NameError Traceback (most recent call last) Cell In[62], line 1 ----> 1 mcorr_iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True) 3 for g in iw_means.managed_graphics: 4 g.cmap.vmax = 200
NameError: name 'mcorr_iw_means' is not defined ''' Although the it seems not have impact to the following code, i wanna to let you know
2.When i use the mcorr_viz.show(), there are some problems.
a. I see the left up panel show error and ask me to 'Click to show javascript error' the following is the error ''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703) '''
the above is motion correction viz and when i use the cnmf viz the following is
''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703) ''' there are also some wanning
''' C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\ipydatagrid\datagrid.py:460: UserWarning: Index name of 'index' is not round-trippable. schema = pd.io.json.build_table_schema(dataframe) C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\graphics_features_base.py:34: UserWarning: converting float64 array to float32 warn(f"converting {array.dtype} array to float32") '''
3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters? I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image. In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params
4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.
And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].
I apologize for a lot of basic question and If you can help me I will appreciate. Looking forward your reply and I wanna to say that is great work! by the way i saw the PCA trace of the cell feature among time plot. but i do not see in this notebook. it will release in the future notebook?
See where it says:
Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered
You need to install ipydatagrid.
Please follow the instructions on the mesmerize-viz repo to install it. :)
On Fri, Nov 3, 2023, 12:05 qweasdf1354 @.***> wrote:
Hi author, today i saw you update the notebook. I try it. that is great! but i still meet some problem i can not resolve by myself. so i try to ask for help.
1.when i run the cell below 'Modify the window_funcs at any time.'
''' iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True)
for g in iw_means.managed_graphics: g.cmap.vmax = 200 '''
the following error occur '''
NameError Traceback (most recent call last) Cell In[62], line 1 ----> 1 mcorr_iw_means.gridplot[0, 0].auto_scale(maintain_aspect=True) 3 for g in iw_means.managed_graphics: 4 g.cmap.vmax = 200
NameError: name 'mcorr_iw_means' is not defined ''' Although the it seems not have impact to the following code, i wanna to let you know
2.When i use the mcorr_viz.show(), there are some problems.
a. I see the left up panel show error and ask me to 'Click to show javascript error' the following is the error ''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936 ) at f.loadModelClass ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729 ) at f._make_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517 ) at f.new_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137 ) at f.handle_comm_open ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894 ) at _handleCommOpen ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473 ) at v._handleCommOpen ( http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage ( http://localhost:8888/static/notebook/3676.bundle.js:1:32703) '''
the above is motion correction viz and when i use the cnmf viz the following is
''' [Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936 ) at f.loadModelClass ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729 ) at f._make_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517 ) at f.new_model ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137 ) at f.handle_comm_open ( @./jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894 ) at _handleCommOpen ( @./jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473 ) at v._handleCommOpen ( http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage ( http://localhost:8888/static/notebook/3676.bundle.js:1:32703) ''' there are also some wanning
''' C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\ipydatagrid\datagrid.py:460: UserWarning: Index name of 'index' is not round-trippable. schema = pd.io.json.build_table_schema(dataframe) C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\fastplotlib\graphics_features_base.py:34: UserWarning: converting float64 array to float32 warn(f"converting {array.dtype} array to float32") '''
3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters? I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image. In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params
4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.
And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].
I apologize for a lot of basic question and If you can help me I will appreciate. Looking forward your reply and I wanna to say that is great work! by the way i saw the PCA trace of the cell feature among time plot. but i do not see in this notebook. it will release in the future notebook?
— Reply to this email directly, view it on GitHub https://github.com/nel-lab/mesmerize-core/issues/240#issuecomment-1792711410, or unsubscribe https://github.com/notifications/unsubscribe-auth/ACHXXREFRPAGLJVCVMQZN63YCUI6DAVCNFSM6AAAAAA6ZC3NGGVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTOOJSG4YTCNBRGA . You are receiving this because you commented.Message ID: @.***>
I forgot to fully get rid of the iw_means
stuff, ignore it XD.
The notebooks will be in a better state by mid next week.
Hi author, I am follow the instructions on the mesmerize-viz repo to install it. and I check is it already install the 'ipydatagrid' using pip install 'ipydatagrid'. the results is following
(mescore) PS C:\Windows\system32> pip install ipydatagrid Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/ Requirement already satisfied: ipydatagrid in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (1.2.0) Requirement already satisfied: bqplot>=0.11.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (0.12.42) Requirement already satisfied: ipywidgets<9,>=7.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (8.1.1) Requirement already satisfied: pandas>=1.3.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (2.1.2) Requirement already satisfied: py2vega>=0.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipydatagrid) (0.6.1) Requirement already satisfied: traitlets>=4.3.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (5.13.0) Requirement already satisfied: traittypes>=0.0.6 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (0.2.1) Requirement already satisfied: numpy>=1.10.4 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from bqplot>=0.11.6->ipydatagrid) (1.26.0) Requirement already satisfied: comm>=0.1.3 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (0.1.4) Requirement already satisfied: ipython>=6.1.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (8.17.2) Requirement already satisfied: widgetsnbextension~=4.0.9 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (4.0.9) Requirement already satisfied: jupyterlab-widgets~=3.0.9 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipywidgets<9,>=7.6->ipydatagrid) (3.0.9) Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2023.3.post1) Requirement already satisfied: tzdata>=2022.1 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from pandas>=1.3.5->ipydatagrid) (2023.3) Requirement already satisfied: gast<0.5,>=0.4.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from py2vega>=0.5->ipydatagrid) (0.4.0) Requirement already satisfied: decorator in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (5.1.1) Requirement already satisfied: jedi>=0.16 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.19.1) Requirement already satisfied: matplotlib-inline in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.1.6) Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (3.0.39) Requirement already satisfied: pygments>=2.4.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.16.1) Requirement already satisfied: stack-data in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.6.2) Requirement already satisfied: exceptiongroup in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (1.1.3) Requirement already satisfied: colorama in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.4.6) Requirement already satisfied: six>=1.5 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from python-dateutil>=2.8.2->pandas>=1.3.5->ipydatagrid) (1.16.0) Requirement already satisfied: parso<0.9.0,>=0.8.3 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.8.3) Requirement already satisfied: wcwidth in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.2.9) Requirement already satisfied: executing>=1.2.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.0.1) Requirement already satisfied: asttokens>=2.1.0 in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (2.4.1) Requirement already satisfied: pure-eval in c:\users\zhouys\anaconda3\envs\mescore\lib\site-packages (from stack-data->ipython>=6.1.0->ipywidgets<9,>=7.6->ipydatagrid) (0.2.2)
I am looking forward the next generation of notebooks!
Did you restart the jupyter server, i.e. not just restarting the kernel but fully shutting down jupyter lab and starting it up again from your terminal/conda prompt with jupyter lab
.
In general installing/updating/changing any jupyter widget libraries (ipywidgets, ipydatagrid, ipy-anything pretty much) you have to restart the jupyter server, it's not sufficient to just restart the kernel.
I restrat the anaconda powershell and there are not change in the error
Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered
by the way is it the mamba activate mescore process may produce this error? when i use mamban activate there is error and i have to use conda to activate this env
**(base) PS C:\Windows\system32> mamba activate mescore
C:\Windows\system32>set MKL_NUM_THREADS=1
C:\Windows\system32>set OPENBLAS_NUM_THREADS=1**
(base) PS C:\Windows\system32> conda activate mescore
Hi author I use the record function button, but where can i found the record results?
What if you try to install ipydatagrid from conda instead of pip:
mamba install -c conda-forge ipydatagrid
I restrat the anaconda powershell and there are not change in the error
Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered
by the way is it the mamba activate mescore process may produce this error? when i use mamban activate there is error and i have to use conda to activate this env
**(base) PS C:\Windows\system32> mamba activate mescore
C:\Windows\system32>set MKL_NUM_THREADS=1
C:\Windows\system32>set OPENBLAS_NUM_THREADS=1**
(base) PS C:\Windows\system32> conda activate mescore
If you are using conda, I belive you have to use conda activate
. mamba activate
in conda produces weirdness as far as I know, @pgunn any thoughts?
Hi author I use the record function button, but where can i found the record results?
It should be in the same dir as the notebook with a timestamp as the filename.
When mamba says to use mamba activate
, use conda activate
instead; I believe it's a bug in some of the conda libraries that mamba uses that they get the name of the program they're being called by and use that to build that string to tell the user what to do, not realising that separate tools to build versus activate an environment would eventually be a thing.
Hi, kushalkolar I use the cmd to activate mescore using mamba and using cmd to 'mamba install -c conda-forge ipydatagrid' in the mescore environment.
folloing were the process and detail
C:\Users\zhouys>mamba activate mescore
C:\Users\zhouys>set MKL_NUM_THREADS=1
C:\Users\zhouys>set OPENBLAS_NUM_THREADS=1
(mescore) C:\Users\zhouys>mamba install -c conda-forge ipydatagrid
Looking for: ['ipydatagrid']
anaconda/pkgs/main/win-64 No change anaconda/pkgs/r/win-64 No change conda-forge/win-64 No change conda-forge/noarch No change anaconda/pkgs/main/noarch No change anaconda/pkgs/r/noarch No change anaconda/pkgs/msys2/win-64 No change anaconda/pkgs/msys2/noarch No change
Pinned packages:
Transaction
Prefix: C:\Users\zhouys\anaconda3\envs\mescore
All requested packages already installed
(mescore) C:\Users\zhouys>
However there is still a error when i 'viz = df.mcorr.viz() viz.show()'
[Open Browser Console for more detailed log - Double click to close this message] Failed to load model class 'DataGridModel' from module 'ipydatagrid' Error: No version of module ipydatagrid is registered at f.loadClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:74936) at f.loadModelClass (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:10729) at f._make_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:7517) at f.new_model (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:5137) at f.handle_comm_open (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/336.ebc7a55ea1768712771f.js?v=ebc7a55ea1768712771f:1:3894) at _handleCommOpen (http://localhost:8888/lab/extensions/@jupyter-widgets/jupyterlab-manager/static/134.a63a8d293fb35a52dc25.js?v=a63a8d293fb35a52dc25:1:73473) at v._handleCommOpen (http://localhost:8888/static/notebook/3676.bundle.js:1:30809) at async v._handleMessage (http://localhost:8888/static/notebook/3676.bundle.js:1:32703)
I restart the cmd and not work too
and when i use the record buttom there is not show the saved file. Is it something usage method i havent got? or something i am doing is wrong?
Please do a conda env list
and send us the result
Hi pgunn, (mescore) C:\Users\zhouys>conda env list
# base C:\Users\zhouys\anaconda3 analysis C:\Users\zhouys\anaconda3\envs\analysis caiman C:\Users\zhouys\anaconda3\envs\caiman cell C:\Users\zhouys\anaconda3\envs\cell cellpose C:\Users\zhouys\anaconda3\envs\cellpose deepcadrt C:\Users\zhouys\anaconda3\envs\deepcadrt dlc C:\Users\zhouys\anaconda3\envs\dlc mescore * C:\Users\zhouys\anaconda3\envs\mescore simba C:\Users\zhouys\anaconda3\envs\simba sleap C:\Users\zhouys\anaconda3\envs\sleap suite2p C:\Users\zhouys\anaconda3\envs\suite2p trace C:\Users\zhouys\anaconda3\envs\trace
And in that environment, please do a conda list
and send us the result
(mescore) C:\Users\zhouys>conda list
#
_tflow_select 2.3.0 mkl defaults
absl-py 2.0.0 pyhd8ed1ab_0 conda-forge
aiohttp 3.8.6 py310h8d17308_1 conda-forge
aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge
anyio 4.0.0 pyhd8ed1ab_0 conda-forge
aom 3.5.0 h63175ca_0 conda-forge
argon2-cffi 23.1.0 pyhd8ed1ab_0 conda-forge
argon2-cffi-bindings 21.2.0 py310h8d17308_4 conda-forge
arrow 1.3.0 pyhd8ed1ab_0 conda-forge
asttokens 2.4.1 pyhd8ed1ab_0 conda-forge
astunparse 1.6.3 pyhd8ed1ab_0 conda-forge
async-lru 2.0.4 pyhd8ed1ab_0 conda-forge
async-timeout 4.0.3 pyhd8ed1ab_0 conda-forge
attrs 23.1.0 pyh71513ae_1 conda-forge
av 10.0.0 py310hef11e44_4 conda-forge
babel 2.13.1 pyhd8ed1ab_0 conda-forge
backports 1.0 pyhd8ed1ab_3 conda-forge
backports.functools_lru_cache 1.6.5 pyhd8ed1ab_0 conda-forge
beautifulsoup4 4.12.2 pyha770c72_0 conda-forge
bleach 6.1.0 pyhd8ed1ab_0 conda-forge
blinker 1.7.0 pyhd8ed1ab_0 conda-forge
blosc 1.21.5 hdccc3a2_0 conda-forge
bokeh 3.3.0 pyhd8ed1ab_0 conda-forge
bqplot 0.12.42 pypi_0 pypi
brotli 1.1.0 hcfcfb64_1 conda-forge
brotli-bin 1.1.0 hcfcfb64_1 conda-forge
brotli-python 1.1.0 py310h00ffb61_1 conda-forge
bzip2 1.0.8 h8ffe710_4 conda-forge
c-ares 1.21.0 hcfcfb64_0 conda-forge
ca-certificates 2023.7.22 h56e8100_0 conda-forge
cached-property 1.5.2 hd8ed1ab_1 conda-forge
cached_property 1.5.2 pyha770c72_1 conda-forge
cachetools 5.3.2 pyhd8ed1ab_0 conda-forge
caiman 1.9.16 py310h00ffb61_0 conda-forge
certifi 2023.7.22 pyhd8ed1ab_0 conda-forge
cffi 1.16.0 py310h8d17308_0 conda-forge
charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge
click 8.1.7 win_pyh7428d3b_0 conda-forge
cloudpickle 3.0.0 pyhd8ed1ab_0 conda-forge
colorama 0.4.6 pyhd8ed1ab_0 conda-forge
colorcet 3.0.1 pyhd8ed1ab_0 conda-forge
comm 0.1.4 pyhd8ed1ab_0 conda-forge
contourpy 1.1.1 py310h232114e_1 conda-forge
cryptography 39.0.0 py310h52f42fa_0 conda-forge
cycler 0.12.1 pyhd8ed1ab_0 conda-forge
cytoolz 0.12.2 py310h8d17308_1 conda-forge
dask-core 2023.10.1 pyhd8ed1ab_0 conda-forge
dav1d 1.2.0 hcfcfb64_0 conda-forge
debugpy 1.8.0 py310h00ffb61_1 conda-forge
decorator 5.1.1 pyhd8ed1ab_0 conda-forge
defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge
eigen 3.4.0 h91493d7_0 conda-forge
entrypoints 0.4 pyhd8ed1ab_0 conda-forge
exceptiongroup 1.1.3 pyhd8ed1ab_0 conda-forge
executing 2.0.1 pyhd8ed1ab_0 conda-forge
expat 2.5.0 h63175ca_1 conda-forge
fastplotlib 0.1.0a15 pypi_0 pypi
ffmpeg 6.0.0 gpl_h3a5b8a7_100 conda-forge
flatbuffers 23.5.26 h63175ca_1 conda-forge
font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge
font-ttf-inconsolata 3.000 h77eed37_0 conda-forge
font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge
font-ttf-ubuntu 0.83 hab24e00_0 conda-forge
fontconfig 2.14.2 hbde0cde_0 conda-forge
fonts-conda-ecosystem 1 0 conda-forge
fonts-conda-forge 1 0 conda-forge
fonttools 4.43.1 py310h8d17308_0 conda-forge
fqdn 1.5.1 pyhd8ed1ab_0 conda-forge
freetype 2.12.1 hdaf720e_2 conda-forge
freetype-py 2.4.0 pypi_0 pypi
frozenlist 1.4.0 py310h8d17308_1 conda-forge
fsspec 2023.10.0 pyhca7485f_0 conda-forge
future 0.18.3 pyhd8ed1ab_0 conda-forge
gast 0.4.0 pyh9f0ad1d_0 conda-forge
gettext 0.21.1 h5728263_0 conda-forge
giflib 5.2.1 h64bf75a_3 conda-forge
glib 2.78.0 h12be248_0 conda-forge
glib-tools 2.78.0 h12be248_0 conda-forge
google-auth 2.23.4 pyhca7485f_0 conda-forge
google-auth-oauthlib 0.4.6 pyhd8ed1ab_0 conda-forge
google-pasta 0.2.0 pyh8c360ce_0 conda-forge
grpc-cpp 1.48.1 hcb02dd0_1 conda-forge
grpcio 1.48.1 py310h1177ea7_1 conda-forge
gst-plugins-base 1.18.5 he07aa86_3 conda-forge
gstreamer 1.18.5 hdff456e_3 conda-forge
h5py 3.9.0 nompi_py310h727aef9_100 conda-forge
hdf5 1.14.0 nompi_h97a5375_103 conda-forge
hdmf 3.11.0 pyh1ea47a8_0 conda-forge
holoviews 1.18.0 pyhd8ed1ab_0 conda-forge
icu 58.2 ha925a31_3 defaults
idna 3.4 pyhd8ed1ab_0 conda-forge
imagecodecs-lite 2019.12.3 py310h3e78b6c_7 conda-forge
imageio 2.31.5 pyh8c1a49c_0 conda-forge
importlib-metadata 6.8.0 pyha770c72_0 conda-forge
importlib_metadata 6.8.0 hd8ed1ab_0 conda-forge
importlib_resources 6.1.0 pyhd8ed1ab_0 conda-forge
iniconfig 2.0.0 pyhd8ed1ab_0 conda-forge
intel-openmp 2023.2.0 h57928b3_50497 conda-forge
ipydatagrid 1.2.0 pyhd8ed1ab_0 conda-forge
ipykernel 6.26.0 pyha63f2e9_0 conda-forge
ipyparallel 8.6.1 pyhd8ed1ab_0 conda-forge
ipython 8.17.2 pyh5737063_0 conda-forge
ipython_genutils 0.2.0 py_1 conda-forge
ipywidgets 8.1.1 pyhd8ed1ab_0 conda-forge
isoduration 20.11.0 pyhd8ed1ab_0 conda-forge
jedi 0.19.1 pyhd8ed1ab_0 conda-forge
jinja2 3.1.2 pyhd8ed1ab_1 conda-forge
joblib 1.3.2 pyhd8ed1ab_0 conda-forge
jpeg 9e hcfcfb64_3 conda-forge
json5 0.9.14 pyhd8ed1ab_0 conda-forge
jsonpointer 2.4 py310h5588dad_3 conda-forge
jsonschema 4.19.2 pyhd8ed1ab_0 conda-forge
jsonschema-specifications 2023.7.1 pyhd8ed1ab_0 conda-forge
jsonschema-with-format-nongpl 4.19.2 pyhd8ed1ab_0 conda-forge
jupyter 1.0.0 pyhd8ed1ab_10 conda-forge
jupyter-lsp 2.2.0 pyhd8ed1ab_0 conda-forge
jupyter-rfb 0.4.1 pypi_0 pypi
jupyter_bokeh 2.0.4 pyhd8ed1ab_0 conda-forge
jupyter_client 8.5.0 pyhd8ed1ab_0 conda-forge
jupyter_console 6.6.3 pyhd8ed1ab_0 conda-forge
jupyter_core 5.5.0 py310h5588dad_0 conda-forge
jupyter_events 0.8.0 pyhd8ed1ab_0 conda-forge
jupyter_server 2.9.1 pyhd8ed1ab_0 conda-forge
jupyter_server_terminals 0.4.4 pyhd8ed1ab_1 conda-forge
jupyterlab 4.0.8 pyhd8ed1ab_0 conda-forge
jupyterlab_pygments 0.2.2 pyhd8ed1ab_0 conda-forge
jupyterlab_server 2.25.0 pyhd8ed1ab_0 conda-forge
jupyterlab_widgets 3.0.9 pyhd8ed1ab_0 conda-forge
keras 2.10.0 pyhd8ed1ab_0 conda-forge
kiwisolver 1.4.5 py310h232114e_1 conda-forge
krb5 1.20.1 h6609f42_0 conda-forge
lazy_loader 0.3 pyhd8ed1ab_0 conda-forge
lcms2 2.15 ha5c8aab_0 conda-forge
lerc 4.0.0 h63175ca_0 conda-forge
libabseil 20220623.0 cxx17_h1a56200_6 conda-forge
libaec 1.1.2 h63175ca_1 conda-forge
libblas 3.9.0 19_win64_mkl conda-forge
libbrotlicommon 1.1.0 hcfcfb64_1 conda-forge
libbrotlidec 1.1.0 hcfcfb64_1 conda-forge
libbrotlienc 1.1.0 hcfcfb64_1 conda-forge
libcblas 3.9.0 19_win64_mkl conda-forge
libclang 14.0.6 default_h77d9078_1 conda-forge
libclang13 14.0.6 default_h77d9078_1 conda-forge
libcurl 8.1.2 h68f0423_0 conda-forge
libdeflate 1.17 hcfcfb64_0 conda-forge
libexpat 2.5.0 h63175ca_1 conda-forge
libffi 3.4.2 h8ffe710_5 conda-forge
libglib 2.78.0 he8f3873_0 conda-forge
libhwloc 2.9.1 h51c2c0f_0 conda-forge
libiconv 1.17 h8ffe710_0 conda-forge
liblapack 3.9.0 19_win64_mkl conda-forge
libogg 1.3.4 h8ffe710_1 conda-forge
libopus 1.3.1 h8ffe710_1 conda-forge
libpng 1.6.39 h19919ed_0 conda-forge
libpq 12.15 hb652d5d_1 defaults
libprotobuf 3.20.3 h12be248_0 conda-forge
libsodium 1.0.18 h8d14728_1 conda-forge
libsqlite 3.44.0 hcfcfb64_0 conda-forge
libssh2 1.10.0 h680486a_3 conda-forge
libtiff 4.5.0 hf8721a0_2 conda-forge
libvorbis 1.3.7 h0e60522_0 conda-forge
libwebp 1.3.2 hcfcfb64_1 conda-forge
libwebp-base 1.3.2 hcfcfb64_0 conda-forge
libxcb 1.13 hcd874cb_1004 conda-forge
libxml2 2.10.4 hc3477c8_0 conda-forge
libxslt 1.1.37 h0192164_0 conda-forge
libzlib 1.2.13 hcfcfb64_5 conda-forge
linkify-it-py 2.0.0 pyhd8ed1ab_0 conda-forge
llvmlite 0.41.1 pypi_0 pypi
locket 1.0.0 pyhd8ed1ab_0 conda-forge
lz4-c 1.9.4 hcfcfb64_0 conda-forge
m2w64-gcc-libgfortran 5.3.0 6 conda-forge
m2w64-gcc-libs 5.3.0 7 conda-forge
m2w64-gcc-libs-core 5.3.0 7 conda-forge
m2w64-gmp 6.1.0 2 conda-forge
m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge
markdown 3.5.1 pyhd8ed1ab_0 conda-forge
markdown-it-py 3.0.0 pyhd8ed1ab_0 conda-forge
markupsafe 2.1.3 py310h8d17308_1 conda-forge
matplotlib 3.8.1 py310h5588dad_0 conda-forge
matplotlib-base 3.8.1 py310hc9baf74_0 conda-forge
matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge
mdit-py-plugins 0.4.0 pyhd8ed1ab_0 conda-forge
mdurl 0.1.0 pyhd8ed1ab_0 conda-forge
mesmerize-core 0.3.0 pyhd8ed1ab_0 conda-forge
mesmerize-viz 0.1.0b1 dev_0
Hi, author, sorry to bother you i have encounter some new questions. i can got the temperal data using the temporal_good function. however, it is not DeltaF/F in the cnmf. i notice that it is different to the common definition of the DeltaF/F in cnmf. how can i got the DeltaF/F results?
Were you able to get ipydatagrid working? Are you in jupyterlab and not jupyter notebook? I'd try updating to the latest jupyterlab and latest ipywidgets.
For dfof you first need to run it: https://mesmerize-core.readthedocs.io/en/latest/api/cnmf.html#mesmerize_core.CNMFExtensions.run_detrend_dfof
sorry i am use the jupyter notebook
That might explain it, install jupyterlab and try it in there :D
thanks i will try it soon
Hi author, when i using the jupyter lab the original problem is resolved however the record buttum is remain problem
the following is the log
TypeError Traceback (most recent call last) File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:179, in IpywidgetToolBar.record_plot(self, obj) 178 try: --> 179 self.plot.recordstart( 180 f"./{datetime.now().isoformat(timespec='seconds').replace(':', '')}.mp4" 181 ) 182 except Exception:
File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_record_mixin.py:208, in RecordMixin.record_start(self, path, fps, codec, pixel_format, options) 207 # start writer process --> 208 self._video_writer.start() 210 # 1.3 seems to work well to reduce that difference between playback time and recording time 211 # will properly investigate later
File ~\anaconda3\envs\mescore\lib\multiprocessing\process.py:121, in BaseProcess.start(self) 120 _cleanup() --> 121 self._popen = self._Popen(self) 122 self._sentinel = self._popen.sentinel
File ~\anaconda3\envs\mescore\lib\multiprocessing\context.py:224, in Process._Popen(process_obj) 222 @staticmethod 223 def _Popen(process_obj): --> 224 return _default_context.get_context().Process._Popen(process_obj)
File ~\anaconda3\envs\mescore\lib\multiprocessing\context.py:336, in SpawnProcess._Popen(process_obj) 335 from .popen_spawn_win32 import Popen --> 336 return Popen(process_obj)
File ~\anaconda3\envs\mescore\lib\multiprocessing\popen_spawn_win32.py:93, in Popen.init(self, process_obj) 92 reduction.dump(prep_data, to_child) ---> 93 reduction.dump(process_obj, to_child) 94 finally:
File ~\anaconda3\envs\mescore\lib\multiprocessing\reduction.py:60, in dump(obj, file, protocol) 59 '''Replacement for pickle.dump() using ForkingPickler.''' ---> 60 ForkingPickler(file, protocol).dump(obj)
File
TypeError: no default reduce due to non-trivial cinit
During handling of the above exception, another exception occurred:
AssertionError Traceback (most recent call last) File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:773, in Widget._handle_msg(self, msg) 771 if 'buffer_paths' in data: 772 _put_buffers(state, data['buffer_paths'], msg['buffers']) --> 773 self.set_state(state) 775 # Handle a state request. 776 elif method == 'request_state':
File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:650, in Widget.set_state(self, sync_data) 645 self._send(msg, buffers=echo_buffers) 647 # The order of these context managers is important. Properties must 648 # be locked when the hold_trait_notification context manager is 649 # released and notifications are fired. --> 650 with self._lock_property(**sync_data), self.hold_trait_notifications(): 651 for name in sync_data: 652 if name in self.keys:
File ~\anaconda3\envs\mescore\lib\contextlib.py:142, in _GeneratorContextManager.exit(self, typ, value, traceback) 140 if typ is None: 141 try: --> 142 next(self.gen) 143 except StopIteration: 144 return False
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1512, in HasTraits.hold_trait_notifications(self) 1510 for changes in cache.values(): 1511 for change in changes: -> 1512 self.notify_change(change)
File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:701, in Widget.notify_change(self, change) 698 if name in self.keys and self._should_send_property(name, getattr(self, name)): 699 # Send new state to front-end 700 self.send_state(key=name) --> 701 super().notify_change(change)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1527, in HasTraits.notify_change(self, change) 1525 def notify_change(self, change: Bunch) -> None: 1526 """Notify observers of a change event""" -> 1527 return self._notify_observers(change)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1570, in HasTraits._notify_observers(self, event) 1567 elif isinstance(c, EventHandler) and c.name is not None: 1568 c = getattr(self, c.name) -> 1570 c(event)
File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:184, in IpywidgetToolBar.record_plot(self, obj) 182 except Exception: 183 traceback.print_exc() --> 184 self._record_button.value = False 185 else: 186 self.plot.record_stop()
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:718, in TraitType.set(self, obj, value) 716 raise TraitError('The "%s" trait is read-only.' % self.name) 717 else: --> 718 self.set(obj, value)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:707, in TraitType.set(self, obj, value) 703 silent = False 704 if silent is not True: 705 # we explicitly compare silent to True just in case the equality 706 # comparison above returns something other than True/False --> 707 obj._notify_trait(self.name, old_value, new_value)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1515, in HasTraits._notify_trait(self, name, old_value, new_value) 1514 def _notify_trait(self, name: str, old_value: t.Any, new_value: t.Any) -> None: -> 1515 self.notify_change( 1516 Bunch( 1517 name=name, 1518 old=old_value, 1519 new=new_value, 1520 owner=self, 1521 type="change", 1522 ) 1523 )
File ~\anaconda3\envs\mescore\lib\site-packages\ipywidgets\widgets\widget.py:701, in Widget.notify_change(self, change) 698 if name in self.keys and self._should_send_property(name, getattr(self, name)): 699 # Send new state to front-end 700 self.send_state(key=name) --> 701 super().notify_change(change)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1527, in HasTraits.notify_change(self, change) 1525 def notify_change(self, change: Bunch) -> None: 1526 """Notify observers of a change event""" -> 1527 return self._notify_observers(change)
File ~\anaconda3\envs\mescore\lib\site-packages\traitlets\traitlets.py:1570, in HasTraits._notify_observers(self, event) 1567 elif isinstance(c, EventHandler) and c.name is not None: 1568 c = getattr(self, c.name) -> 1570 c(event)
File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_frame_ipywidget_toolbar.py:186, in IpywidgetToolBar.record_plot(self, obj) 184 self._record_button.value = False 185 else: --> 186 self.plot.record_stop()
File ~\anaconda3\envs\mescore\lib\site-packages\fastplotlib\layouts_record_mixin.py:234, in RecordMixin.record_stop(self) 231 self._video_writer_queue.put(None) 233 # wait for writer to finish --> 234 self._video_writer.join(timeout=5) 236 self._video_writer = None 238 # so self._record() is no longer called on every render cycle
File ~\anaconda3\envs\mescore\lib\multiprocessing\process.py:148, in BaseProcess.join(self, timeout) 146 self._check_closed() 147 assert self._parent_pid == os.getpid(), 'can only join a child process' --> 148 assert self._popen is not None, 'can only join a started process' 149 res = self._popen.wait(timeout) 150 if res is not None:
AssertionError: can only join a started process
Do you have pyav and ffmpeg installed?
i install the ffmpeg early. although i can use ffmpeg to clip the video by cmd ffmpeg command, i am not sure i install the ffmpeg correctly and i never use pyav before
I have got the df/f. thanks a lot kushalkolar! the software is a great work!
the packgage in my mescore env have ffmpeg but pyav not find
The fastplotlib record tool is in a primitive state and hasn't been tested on windows (which can be weird with ffmpeg and video stuff) so I would just use a screen recorder for now. This is generally a good screen recorder for windows: https://obsproject.com/
I know OBS. This is a great tool and i use it to record animal behaviour previously. Are you mean recording the full screan instead of the user_interface? If that's what you mean, then I know what to do
Yup you could record the full screen of the visualization or draw a box and record.
Right now we have several other priorities with fastplotlib, the recording is a "bonus" feature for now and it will be a few months before that feature gets ironed out.
Hi, kushalkolar I appreciate to encounter the elegent tools for calcium extraction.
I would like to acknowledge your support in the acknowledgements section of my project which maybe accomplish recently. I believe that your assistance was instrumental in the progress and completion of our work.
Would you be comfortable with being mentioned in this context?
Thank you for considering this request, and please let me know your thoughts.
Best regards,
That's nice to hear! For now you can cite our older mesmerize paper, I wonder if we'll do a preprint for the new stuff sometime: https://www.nature.com/articles/s41467-021-26550-y
Let us know if you need more help!
Thanks a lot! I will cite the paper you mentioned and if preprint online please let me know. i will cite it all
You should also cite the main algorithm papers (depending on which ones you're using) and the caiman paper:
caiman: https://elifesciences.org/articles/38173 motion correction: https://pubmed.ncbi.nlm.nih.gov/28782629/ CNMF (2p): https://pubmed.ncbi.nlm.nih.gov/26774160/ CNMFE (if you're using 1p): https://pubmed.ncbi.nlm.nih.gov/29469809/
I just noticed you had more questions, answer below:
3.After run 'Run the cnmf batch items' and 'Load outputs', i try to 'Visualize with mesmerize-viz'. However i not like the mcorr that give me 9 subplot pannel, it give me only one user_surface like i first run the viz when i havent to paraSearch. Is it something i lost? how can i see the total parameters?
Not sure what you mean here?
I also wanna to know how to see the all counters when i running the '''viz_cnmf.show()''' and not scrolling the 'cell contours' bar. if i change the scrolling bar i can not find way to go back to see the full image.
The toolbar has buttons to auto scale, center the scene, etc. You can uncheck the auto-zoom or change the scale. See https://github.com/kushalkolar/mesmerize-viz#explore-components
In the bottom pannel, what is 'contour co...' what is accepted rejected?snr_comps and so on. and what is 'invisible al...' and what is eval params
You can color the contours based on evaluation metrics or display the accepted/rejected components. The components are accepted or rejeted based on the eval metrics (this is from caiman). See: https://github.com/kushalkolar/mesmerize-viz#visualize-component-evaluation-metrics
4.the last question is could I plot the contours of all cells and i sellected cells? using ' get contours' can satisfy my purpose? purpose: I wanna to plot all contours in grey and some selected contours in color.
Yes, you can index a fastplotlib line collection like this:
contours_coordinates, centers_of_mass = df.iloc[index].cnmf.get_contours()
plot.add_line_collection(contours_coordinates, name="contours")
gray_ixs = np.array([1, 3, 5, 7])
red_ixs = np.array([2, 4, 6, 8])
plot["contours"][gray_ixs].colors = "gray"
plot["contours"][red_ixs].colors = "red"
And could i plot the contours in the tiff of my raw tif or the style in the mcorr i adjuest [viz.image_widget.gridplot["mcorr"]["image_widget_managed"].cmap.vmax = 2000][viz.image_widget.cmap = "viridis"].
I don't understand what you mean here sorry.
Our scipy talk is a good way to get familiar with fastplotlib: https://www.youtube.com/watch?v=Q-UJpAqljsU
Demo nbs from the talk: https://github.com/fastplotlib/fastplotlib-scipy2023
Note that the demo nbs are slightly out of date, the sidecar stuff is not necessary anymore (you can use show(sidecar=True)
to display in sidecar).
Thanks kushalkolar! almost everything is done and the previous unclear thing is clear right now. Thank you once again, and I'm amazed at having such a great tool. Looking forward your future work!
Hi kushalkolar, i got a problem when i deal with my data. I have 4 tif file (5000,5000,5000,1000 frames) which is the same visual field and I wanna to detect cell across the 4 tif file. I mean the same cell will appear in the all tif. if there any method to identify the same cells? or use one contours to detect all 4 tif deltaF/F?
and could i got the [Deconvolution and demixing of calcium imaging data]?
it is support big tif format?
Concatenating the tiff files is the easiest way to go as long as these aren't different sessions where the plane is slightly different or some cells that are in one file are not in the other. If that's the case you'll have to do multi-session registration with caiman.
If you want deconvolution, the spike estimates are in cnmf_obj.estimates.S
. However I'd recommend looking at CASCADE which is better for deconvolution: https://github.com/HelmchenLabSoftware/Cascade
Yes caiman works with bigtiff.
that is great! concatenating the tiff files is sufficient! Thanks a lot!
Thank you. I've heard of CASCADE before, and I'll try CASCADE.
Hi kushalkolar, sorry to bother you again. i use the folloing code to concate 4 tif file, but when i use mescore, the error occur
import tifffile as tf
import numpy as np
def concatenate_tiffs(tiff_paths, output_path):
tiffs = [tf.imread(tiff_path) for tiff_path in tiff_paths]
concatenated = np.vstack(tiffs)
tf.imwrite(output_path, concatenated)
# Paths to your tiff files and desired output
input_files = [
'CellVideo_0_E_20_Iter_6030_output.tif',
'CellVideo_1_E_20_Iter_6030_output.tif',
'CellVideo_2_E_20_Iter_6030_output.tif',
'CellVideo_3_E_20_Iter_6030_output.tif'
]
output_file = 'Concatenated_output.tif'
# Concatenate and save
concatenate_tiffs(input_files, output_file)
# Inspect the resulting TIFF
def inspect_tiff(file_path):
with tf.TiffFile(file_path) as tiff:
image = tiff.asarray()
print(f"File: {file_path}")
print(f"Shape: {image.shape}")
print(f"Data type: {image.dtype}\n")
inspect_tiff(output_file)
when i run df.iloc[0].caiman.run() in mocrr
the following error occur
Running 2b1d769e-a57d-4412-b5ab-628bfacbfbfa with local backend
starting mc
mc failed, stored traceback in output
<mesmerize_core.caiman_extensions.common.DummyProcess at 0x271a6cf69b0>
i check using the original tif is work.
mc failed, stored traceback in output
The output will print the traceback, df.iloc[index].mcorr.get_output()
Hi kushalkolar! the following is the error it seems the RAM is not enough. when i run the bigtif the total 32GB RAM is used and maybe the transition step have not enough RAM to go ahead. it maybe ok, i will try it in the more powerful workstation which have 512GB RAM.
`--------------------------------------------------------------------------- BatchItemUnsuccessfulError Traceback (most recent call last) Cell In[23], line 1 ----> 1 df.iloc[0].mcorr.get_output()
File ~\anaconda3\envs\mescore\lib\site-packages\mesmerize_core\caiman_extensions_utils.py:24, in validate.
BatchItemUnsuccessfulError: Batch item was unsuccessful, traceback from subprocess: multiprocessing.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 125, in worker result = (True, func(*args, kwds)) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 48, in mapstar return list(map(args)) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3116, in tile_and_correct_wrapper outv[:, idxs] = np.reshape( File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\numpy\core\fromnumeric.py", line 285, in reshape return _wrapfunc(a, 'reshape', newshape, order=order) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\numpy\core\fromnumeric.py", line 59, in _wrapfunc return bound(args, kwds) numpy.core._exceptions._ArrayMemoryError: Unable to allocate 1.31 GiB for an array with shape (1143, 512, 600) and data type float32 """
The above exception was the direct cause of the following exception:
Traceback (most recent call last): File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\mesmerize_core\algorithms\mcorr.py", line 67, in run_algo mc.motion_correct(save_movie=True) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 252, in motion_correct self.motion_correct_pwrigid(template=template, save_movie=save_movie) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 366, in motion_correct_pwrigid _x_shifts_els, _y_shifts_els, _z_shifts_els, _coord_shifts_els = motion_correct_batch_pwrigid( File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3004, in motion_correct_batch_pwrigid fname_tot_els, res_el = motion_correction_piecewise(fname, splits, strides, overlaps, File "C:\Users\zhouys\anaconda3\envs\mescore\lib\site-packages\caiman\motion_correction.py", line 3194, in motion_correction_piecewise res = dview.map_async(tile_and_correct_wrapper, pars).get(4294967) File "C:\Users\zhouys\anaconda3\envs\mescore\lib\multiprocessing\pool.py", line 774, in get raise self._value numpy.core._exceptions._ArrayMemoryError: Unable to allocate 1.31 GiB for an array with shape (1143, 512, 600) and data type float32`
Hi kushalkolar! I use the workstation using ubuntu18.04 to run the code and i found the cpu utilization is high(almost 100%) however, after 2-3 min, the cpu utility is low is that normal?
`top - 23:18:34 up 3:26, 1 user, load average: 0.59, 0.34, 0.38 Tasks: 1594 total, 1 running, 884 sleeping, 0 stopped, 127 zombie %Cpu(s): 0.1 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 52798528+total, 43617897+free, 5901760 used, 85904544 buff/cache KiB Swap: 2097148 total, 2097148 free, 0 used. 51861302+avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3220 ps 20 0 12.874g 565596 131612 S 4.9 0.1 12:38.48 gnome-she+
3075 root 20 0 26.619g 134668 102500 S 4.6 0.0 6:23.61 Xorg
4510 ps 20 0 823732 47432 31012 S 3.0 0.0 4:41.79 gnome-ter+
22444 ps 20 0 47616 6036 3628 R 1.6 0.0 0:44.35 top
21449 ps 20 0 591372 156076 27164 S 1.3 0.0 0:32.52 jupyter-l+
2534 root -51 0 0 0 0 S 1.0 0.0 2:02.04 irq/435-n+
3242 ps 9 -11 2572872 17544 13872 S 1.0 0.0 0:51.22 pulseaudio
3676 ps 20 0 4868900 776820 291272 S 1.0 0.1 29:36.83 firefox
16029 ps 20 0 993340 175588 107888 S 1.0 0.0 1:05.60 software-+
21182 ps 20 0 2844032 243596 102096 S 1.0 0.0 1:22.36 Isolated +
3551 ps 20 0 1137800 74176 59836 S 0.7 0.0 0:03.08 nautilus-+
1 root 20 0 225768 9516 6740 S 0.3 0.0 0:15.60 systemd
11 root 20 0 0 0 0 I 0.3 0.0 0:04.67 rcu_sched
1223 root 20 0 0 0 0 S 0.3 0.0 0:01.49 jbd2/nvme+
2170 avahi 20 0 47288 3836 3304 S 0.3 0.0 0:01.69 avahi-dae`
What are you running?
I run the mcorr using the caimam.run function and i found in windows it prompt the max threding in windows is 63 and there are 129 . so i using the ubuntu to run the code and there is normal and not error prompt. however after 1 or 2 minutes the utilitys of python processes disappear which the utility is almost 100%. and i stuck in starting mc near 1 hour and can not go to the next step and i shutt down the process. i notice there may be something unexpected. i use miniforege3 to using mamba.
Hi kushalkolar! i am looking forward for your help. thanks a lot
I run the mcorr using the caimam.run function and i found in windows it prompt the max threding in windows is 63 and there are 129 . so i using the ubuntu to run the code and there is normal and not error prompt. however after 1 or 2 minutes the utilitys of python processes disappear which the utility is almost 100%. and i stuck in starting mc near 1 hour and can not go to the next step and i shutt down the process. i notice there may be something unexpected. i use miniforege3 to using mamba.
i have not intall viz on ubuntu and i install this them. however i meet error i can not install pyqt6 in the mescore env. the following error occur
`pip install PyQt6 --index-url https://pypi.org/simple/ Looking in indexes: https://pypi.org/simple/ Collecting PyQt6 Using cached PyQt6-6.6.0.tar.gz (1.0 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... error error: subprocess-exited-with-error
× Preparing metadata (pyproject.toml) did not run successfully.
│ exit code: 1
╰─> [20 lines of output]
Querying qmake about your Qt installation...
Traceback (most recent call last):
File "/home/ps/miniforge3/envs/mescore/lib/python3.11/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in
note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed
× Encountered error while generating package metadata. ╰─> See above for output.
note: This is an issue with the package mentioned above, not pip. hint: See above for details. `
Hi author, i have some issues, could you help me to resovle?
the system is window10 and i run the installation protocal from the github page using anaconda.
when i run the mcorr_cnmf.ipynb, i can run the code until the 'Visualize raw & MCorr movie side-by-side' step.
I try to search the similar situation, but it seems it is none, so could you help me?