Closed ksnzh closed 1 year ago
Pytorch seems cool, but it is unclear how it will interact with other libraries like tinycudann and nerfacc. We will probably let the field settle a little before adding support.
@tancik nerfacc@882d992(ahead of v0.3.5) works fine with pytorch nightly and cuda11.8
❯ python examples/train_ngp_nerf.py --train_split train --scene lego
elapsed_time=1.29s | step=0 | loss=0.07298 | alive_ray_mask=256 | n_rendering_samples=68299 | num_rays=256 |
elapsed_time=90.28s | step=10000 | loss=0.00059 | alive_ray_mask=15833 | n_rendering_samples=261834 | num_rays=47332 |
elapsed_time=186.81s | step=20000 | loss=0.00037 | alive_ray_mask=16590 | n_rendering_samples=261559 | num_rays=50510 |
100%|████████████████████████████████████████████████████████████████████████████████| 200/200 [00:52<00:00, 3.78it/s]
evaluation: psnr_avg=35.57740461349487
training stops
here is my python environment
torch 2.0.0+cu118 c:\users\ksnzh\scoop\persist\miniconda3\envs\pt\lib\site-packages pip
nerfacc 0.3.5 c:\users\ksnzh\workspace\nerfacc c:\users\ksnzh\workspace\nerfacc
For tinycudann, I run instant-ngp with cuda12 and it seems okey.
PyTorch 2.0 is now supported
After modifying code blow, nerfstudio can run with pytroch 2.0.
But use default fp16 training, it will get error.
When i changged to use fp32 training, the result is not stable.