Open gschian0 opened 1 year ago
I think this error is related to whatever the problem is ...
[NOTE] Not running eval iterations since only viewer is enabled.
Use --vis {wandb, tensorboard, viewer+wandb, viewer+tensorboard} to run with eval.
No Nerfstudio checkpoint to load, so training from scratch.
Disabled tensorboard/wandb event writers
GPUMemoryArena: Warning: GPU 0 does not support virtual memory. Falling back to regular allocations, which will be larger and can cause occasional stutter.
Printing profiling stats, from longest to shortest duration in seconds
Trainer.train_iteration: 3.4315
VanillaPipeline.get_train_loss_dict: 3.4051
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /home/user/.local/bin/ns-train:8 in
i'm using the 2 gpus with the train using command ns-train nerfacto --data data/nerfstudio/poster --machine.num-devices 2
i'm not sure how to do that with the custom data...
Multi-gpu doesn't work well with the nerfacto model.
The viewer is working to play back the supplied scenes so I have access to the gpu using the docker container ... this is my Dockerfile
sudo docker run --gpus all -v
pwd/datasets:/datasets -v 'pwd':/workspace/ -v
pwd/.cache:/home/user/.cache/ -p 7007:7007 --rm -it 0043277ff719
I am running this image
dromni/nerfstudio 0.3.2 0043277ff719 2 weeks ago 21.2GB
I am using NVIDIA NGC on VULTR
vCPU/s: 12 vCPUs RAM: 131072.00 MB Storage: 700 GB NVMe Bandwidth: [1.23 GB](javascript:changeTabSubmenu('subsusage')) Label: zen-boom OS: Ubuntu 22.04 LTS Application: [NVIDIA NGC](https://www.vultr.com/marketplace/apps/nvidia-ngc/) App Instructions
output ofnvidia-smi
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.85.05 Driver Version: 525.85.05 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA A16-16Q On | 00000000:06:00.0 Off | 0 | | N/A N/A P8 N/A / N/A | 0MiB / 16384MiB | 0% Default | | | | Disabled | +-------------------------------+----------------------+----------------------+ | 1 NVIDIA A16-16Q On | 00000000:07:00.0 Off | 0 | | N/A N/A P8 N/A / N/A | 0MiB / 16384MiB | 0% Default | | | | Disabled | +-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ *Describe the bug** A clear and concise description of what the bug is. ERROR :
────────────────────────────────────────────── 💀 💀 💀 ERROR 💀 💀 💀 ─────────────────────────────────────────────── Error running command: colmap feature_extractor --database_path data/colmap/database.db --image_path data/images --ImageReader.single_camera 1 --ImageReader.camera_model OPENCV --SiftExtraction.use_gpu 1 ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── CUDA error at /colmap/src/util/cuda.cc:59 - no CUDA-capable device is detected
To Reproduce Steps to reproduce the behavior: run this command
ns-process-data 'video' --data data/g3dvid.mp4 --output-dir ./data/
Expected behavior A clear and concise description of what you expected to happen. process the video and create a nerf training