neuralmagic / nm-vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://nm-vllm.readthedocs.io
Other
251 stars 10 forks source link

[Bug]: Error response from daemon: could not select device driver "" with capabilities: [[gpu]]. #404

Closed chintan-ushur closed 2 months ago

chintan-ushur commented 2 months ago

Your current environment

PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.5.119
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               224
On-line CPU(s) list:                  0-223
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8480+
CPU family:                           6
Model:                                143
Thread(s) per core:                   2
Core(s) per socket:                   56
Socket(s):                            2
Stepping:                             8
BogoMIPS:                             4000.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
L1d cache:                            5.3 MiB (112 instances)
L1i cache:                            3.5 MiB (112 instances)
L2 cache:                             224 MiB (112 instances)
L3 cache:                             210 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222
NUMA node1 CPU(s):                    1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187,189,191,193,195,197,199,201,203,205,207,209,211,213,215,217,219,221,223
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] pyzmq==26.1.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.0
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.4@90bab18f24dce1967282fbb1ebcd2c9aecc67d30
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    NIC8    NIC9    CPU Affinity      NUMA Affinity   GPU NUMA ID
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    PXB     PXB     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS     0,2,4,6,8,10      0               N/A
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    NODE    NODE    PXB     NODE    NODE    SYS     SYS     SYS     SYS     SYS     0,2,4,6,8,10      0               N/A
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    NODE    NODE    NODE    PXB     NODE    SYS     SYS     SYS     SYS     SYS     0,2,4,6,8,10      0               N/A
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    NODE    NODE    NODE    NODE    PXB     SYS     SYS     SYS     SYS     SYS     0,2,4,6,8,10      0               N/A
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS     SYS     SYS     SYS     SYS     PXB     PXB     NODE    NODE    NODE    1,3,5,7,9,11      1               N/A
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS     SYS     SYS     SYS     SYS     NODE    NODE    PXB     NODE    NODE    1,3,5,7,9,11      1               N/A
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE    PXB     NODE    1,3,5,7,9,11      1               N/A
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE    PXB     1,3,5,7,9,11      1               N/A
NIC0    PXB     NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS
NIC1    PXB     NODE    NODE    NODE    SYS     SYS     SYS     SYS     PIX      X      NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS
NIC2    NODE    PXB     NODE    NODE    SYS     SYS     SYS     SYS     NODE    NODE     X      NODE    NODE    SYS     SYS     SYS     SYS     SYS
NIC3    NODE    NODE    PXB     NODE    SYS     SYS     SYS     SYS     NODE    NODE    NODE     X      NODE    SYS     SYS     SYS     SYS     SYS
NIC4    NODE    NODE    NODE    PXB     SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE     X      SYS     SYS     SYS     SYS     SYS
NIC5    SYS     SYS     SYS     SYS     PXB     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS      X      PIX     NODE    NODE    NODE
NIC6    SYS     SYS     SYS     SYS     PXB     NODE    NODE    NODE    SYS     SYS     SYS     SYS     SYS     PIX      X      NODE    NODE    NODE
NIC7    SYS     SYS     SYS     SYS     NODE    PXB     NODE    NODE    SYS     SYS     SYS     SYS     SYS     NODE    NODE     X      NODE    NODE
NIC8    SYS     SYS     SYS     SYS     NODE    NODE    PXB     NODE    SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE     X      NODE
NIC9    SYS     SYS     SYS     SYS     NODE    NODE    NODE    PXB     SYS     SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8
  NIC9: mlx5_9

🐛 Describe the bug

While deploying a model via docker, seeing and error:

Docker command:

MODEL_ID=my_model_from_huggingface
docker run --gpus all --shm-size 2g ghcr.io/neuralmagic/nm-vllm-openai:latest --model $MODEL_ID --token my_token

Error:

status: Downloaded newer image for ghcr.io/neuralmagic/nm-vllm-openai:latest
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
chintan-ushur commented 2 months ago

This is resolved by performing below steps:

sudo apt install -y nvidia-docker2
sudo systemctl daemon-reload
sudo systemctl restart docker

Reference