neurodata / scikit-learn

scikit-learn-tree fork: A fork that enables extensions of Python and Cython API for decision trees
https://scikit-learn.org
BSD 3-Clause "New" or "Revised" License
7 stars 6 forks source link

[FAKE] GMM IC PR for comment #43

Open bdpedigo opened 1 year ago

bdpedigo commented 1 year ago

Reference Issues/PRs

What does this implement/fix? Explain your changes.

Any other comments?

github-actions[bot] commented 1 year ago

❌ Linting issues

This PR is introducing linting issues. Here's a summary of the issues. Note that you can avoid having linting issues by enabling pre-commit hooks. Instructions to enable them can be found here.

You can see the details of the linting issues under the lint job here


ruff

ruff detected issues. Please run ruff --fix --output-format=full . locally, fix the remaining issues, and push the changes. Here you can see the detected issues. Note that the installed ruff version is ruff=0.5.1.

``` examples/linear_model/plot_tweedie_regression_insurance_claims.py:82:35: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 81 | # unquote string fields 82 | for column_name in df.columns[df.dtypes.values == object]: | ^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 83 | df[column_name] = df[column_name].str.strip("'") 84 | return df.iloc[:n_samples] | sklearn/cluster/_optics.py:327:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 325 | """ 326 | dtype = bool if self.metric in PAIRWISE_BOOLEAN_FUNCTIONS else float 327 | if dtype == bool and X.dtype != bool: | ^^^^^^^^^^^^^ E721 328 | msg = ( 329 | "Data will be converted to boolean for" | sklearn/cluster/tests/test_dbscan.py:294:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 292 | obj = DBSCAN() 293 | s = pickle.dumps(obj) 294 | assert type(pickle.loads(s)) == obj.__class__ | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 | sklearn/linear_model/tests/test_ridge.py:1023:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 1022 | assert len(ridge_cv.coef_.shape) == 1 1023 | assert type(ridge_cv.intercept_) == np.float64 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 1024 | 1025 | cv = KFold(5) | sklearn/linear_model/tests/test_ridge.py:1031:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 1030 | assert len(ridge_cv.coef_.shape) == 1 1031 | assert type(ridge_cv.intercept_) == np.float64 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 | sklearn/metrics/pairwise.py:2391:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 2389 | dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else "infer_float" 2390 | 2391 | if dtype == bool and (X.dtype != bool or (Y is not None and Y.dtype != bool)): | ^^^^^^^^^^^^^ E721 2392 | msg = "Data was converted to boolean for metric %s" % metric 2393 | warnings.warn(msg, DataConversionWarning) | sklearn/model_selection/_split.py:2938:27: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 2936 | if value is None and hasattr(self, "cvargs"): 2937 | value = self.cvargs.get(key, None) 2938 | if len(w) and w[0].category == FutureWarning: | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 2939 | # if the parameter is deprecated, don't show it 2940 | continue | sklearn/model_selection/tests/test_validation.py:589:20: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 588 | # Make sure all the arrays are of np.ndarray type 589 | assert type(cv_results["test_r2"]) == np.ndarray | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 590 | assert type(cv_results["test_neg_mean_squared_error"]) == np.ndarray 591 | assert type(cv_results["fit_time"]) == np.ndarray | sklearn/model_selection/tests/test_validation.py:590:20: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 588 | # Make sure all the arrays are of np.ndarray type 589 | assert type(cv_results["test_r2"]) == np.ndarray 590 | assert type(cv_results["test_neg_mean_squared_error"]) == np.ndarray | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 591 | assert type(cv_results["fit_time"]) == np.ndarray 592 | assert type(cv_results["score_time"]) == np.ndarray | sklearn/model_selection/tests/test_validation.py:591:20: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 589 | assert type(cv_results["test_r2"]) == np.ndarray 590 | assert type(cv_results["test_neg_mean_squared_error"]) == np.ndarray 591 | assert type(cv_results["fit_time"]) == np.ndarray | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 592 | assert type(cv_results["score_time"]) == np.ndarray | sklearn/model_selection/tests/test_validation.py:592:20: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 590 | assert type(cv_results["test_neg_mean_squared_error"]) == np.ndarray 591 | assert type(cv_results["fit_time"]) == np.ndarray 592 | assert type(cv_results["score_time"]) == np.ndarray | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 593 | 594 | # Ensure all the times are within sane limits | sklearn/utils/estimator_checks.py:1504:8: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 1503 | # func can output tuple (e.g. score_samples) 1504 | if type(result_full) == tuple: | ^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 1505 | result_full = result_full[0] 1506 | result_by_batch = list(map(lambda x: x[0], result_by_batch)) | sklearn/utils/tests/test_validation.py:1344:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 1342 | ) 1343 | assert str(raised_error.value) == str(err_msg) 1344 | assert type(raised_error.value) == type(err_msg) | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E721 | sklearn/utils/validation.py:882:49: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks | 880 | if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig): 881 | dtype_orig = np.result_type(*dtypes_orig) 882 | elif pandas_requires_conversion and any(d == object for d in dtypes_orig): | ^^^^^^^^^^^ E721 883 | # Force object if any of the dtypes is an object 884 | dtype_orig = object | Found 14 errors. ```

Generated for commit: e2f9a77. Link to the linter CI: here