Open emptymalei opened 7 years ago
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers 。 这本既有一些模型的内容也侧重相关的编程。而且有一些ipython notebook 的例子。 书目如下。 Prologue: Why we do it.
Chapter 1: Introduction to Bayesian Methods Introduction to the philosophy and practice of Bayesian methods and answering the question, "What is probabilistic programming?"
Chapter 2: A little more on PyMC We explore modeling Bayesian problems using Python's PyMC library through examples. How do we create Bayesian models?
Chapter 3: Opening the Black Box of MCMC We discuss how MCMC, Markov Chain Monte Carlo, operates and diagnostic tools.
Chapter 4: The Greatest Theorem Never Told We explore an incredibly useful, and dangerous, theorem: The Law of Large Numbers.
Chapter 5: Would you rather lose an arm or a leg? The introduction of loss functions and their (awesome) use in Bayesian methods.
Chapter 6: Getting our prior-ities straight Probably the most important chapter. We examine our prior choices and draw on expert opinions craft priors.
Chapter X1: Bayesian methods in Machine Learning and Model Validation We explore how to resolve the overfitting problem plus popular ML methods.
Chapter X2: More PyMC Hackery We explore the gritty details of PyMC.
我推荐这本 The Elements of Statistical Learning
https://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
这是目录
我是觉得很多感兴趣的点都涵盖了,全书刷下来肯定会有帮助
@lxm1117 这本书我也 star 了,一直想读来着。
@ErbB4 我也想学习 statistical learning.
突然感觉好缺时间。
Neuroscience + Machine Learning
我觉得可以学习一下结合 neuroscience + machine learning 这样的书。如果讨论类型的话,大致有:
找到一篇论文 Toward an Integration of Deep Learning and Neuroscience 还有一本有意思的书:Emergent Neural Computational Architectures Based on Neuroscience
Computational Neuroscience
如果单纯这个的话,似乎可以进一步学习一下 theoretical neuroscience, 例如
.
这本书里面也有关于 neuroscience 和 machine learning 的讨论。(G. Hinton 的短文 Machine learning for neuroscience 推荐的一本书,提到里面有非常有趣的关于大脑和 machine learning 的观点。)
目录: