nextgrid / deep-learning-labs-openAI

Deep Learning Labs by Nextgrid
https://nextgrid.ai/dll
12 stars 1 forks source link

Add function to measure best result over last 100 rounds. #13

Closed Mindgames closed 4 years ago

Mindgames commented 4 years ago
class SaveOnBestTrainingRewardCallback(BaseCallback):
    """
    Callback for saving a model (the check is done every ``check_freq`` steps)
    based on the training reward (in practice, we recommend using ``EvalCallback``).

    :param check_freq: (int)
    :param log_dir: (str) Path to the folder where the model will be saved.
      It must contains the file created by the ``Monitor`` wrapper.
    :param verbose: (int)
    """
    def __init__(self, check_freq: int, log_dir: str, verbose=1):
        super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
        self.check_freq = check_freq
        self.log_dir = log_dir
        self.save_path = os.path.join(log_dir, 'best_model')
        self.best_mean_reward = -np.inf

    def _init_callback(self) -> None:
        # Create folder if needed
        if self.save_path is not None:
            os.makedirs(self.save_path, exist_ok=True)

    def _on_step(self) -> bool:
        if self.n_calls % self.check_freq == 0:

          # Retrieve training reward
          x, y = ts2xy(load_results(self.log_dir), 'timesteps')
          if len(x) > 0:
              # Mean training reward over the last 100 episodes
              mean_reward = np.mean(y[-100:])
              if self.verbose > 0:
                print(f"Num timesteps: {self.num_timesteps}")
                print(f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}")

              # New best model, you could save the agent here
              if mean_reward > self.best_mean_reward:
                  self.best_mean_reward = mean_reward
                  # Example for saving best model
                  if self.verbose > 0:
                    print(f"Saving new best model to {self.save_path}.zip")
                  self.model.save(self.save_path)

        return True