nfmcclure / tensorflow_cookbook

Code for Tensorflow Machine Learning Cookbook
https://www.packtpub.com/big-data-and-business-intelligence/tensorflow-machine-learning-cookbook-second-edition
MIT License
6.23k stars 2.41k forks source link

chapter 8 Example: Implenmenting an Advanced CNN make python stopped working #160

Closed pkxpp closed 5 years ago

pkxpp commented 5 years ago

when i use the tensorflow 1.12 to run the code, but the pyhont stopped working, can you give me some help?Thanks very much

# More Advanced CNN Model: CIFAR-10
#---------------------------------------
#
# In this example, we will download the CIFAR-10 images
# and build a CNN model with dropout and regularization
#
# CIFAR is composed ot 50k train and 10k test
# images that are 32x32.

import os
import sys
import tarfile
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import urllib
# from PIL import Image

# Start a graph session
sess = tf.Session()

# Set model parameters
batch_size = 32
output_every = 50
generations = 1
eval_every = 500
# evaluation_size = 500
image_width = 32
image_height = 32
crop_height = 24
crop_width = 24
# target_size = max(train_labels) + 1
num_channels = 3
num_targets = 10
data_dir = '..\\dataset'
extract_folder = '..\\dataset\\cifar-10-batches-bin'

learning_rate = 0.005
lr_decay = 0.9
num_gens_to_wait = 250

image_vec_length = image_height * image_width * num_channels
record_length = 1 + image_vec_length

if not os.path.exists(data_dir):
    os.makedirs(data_dir)

cifar10_url = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
data_file = os.path.join(data_dir, 'cifar-10-binary.tar.gz')
if not os.path.isfile(data_file):
    # download
    def progress(block_num, block_size, total_size):
        progress_info = [cifar10_url, float(block_num * block_size) / float(total_size) * 100.0]
        print('\r Downloading {} - {:.2f}%'.format(*progress_info), end="")
    filepath, _ = urllib.request.urlretrieve(cifar10_url, data_file, progress)
    tarfile.open(filepath, 'r:gz').extractall(data_dir)

def read_cifar_files(filename_queue, distort_images = True):
    reader = tf.FixedLengthRecordReader(record_bytes = record_length)
    key, record_string = reader.read(filename_queue)
    record_bytes = tf.decode_raw(record_string, tf.uint8)
    # Extract label
    image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32)
    # Extract image
    image_extracted = tf.reshape(tf.slice(record_bytes, [1], [image_vec_length]), [num_channels, image_height, image_width])

    # reshape image
    image_uint8image = tf.transpose(image_extracted, [1, 2, 0])
    reshaped_image = tf.cast(image_uint8image, tf.float32)

    # Randomly Crop image
    final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, crop_width, crop_height)

    if distort_images:
        final_image = tf.image.random_flip_left_right(final_image)
        final_image = tf.image.random_brightness(final_image, max_delta=63)
        final_image = tf.image.random_contrast(final_image, lower=0.2, upper=1.8)

    # final_image = tf.image.per_image_whitening(final_image)
    final_image = tf.image.per_image_standardization(final_image)
    return (final_image, image_label)

def input_pipeline(batch_size, train_logical=True):
    if train_logical:
        files = [os.path.join(data_dir, extract_folder, 'data_batch{}.bin'.format(i)) for i in range(1, 6)]
    else:
        files = [os.path.join(data_dir, extract_folder, 'test_batch.bin')]
    filename_queue = tf.train.string_input_producer(files)
    image, label = read_cifar_files(filename_queue)

    min_after_dequeue = 1000
    capacity = min_after_dequeue + 3 * batch_size
    example_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size, capacity, min_after_dequeue)
    return (example_batch, label_batch)

def cifar_cnn_model(input_images, batch_size, train_logical=True):
    def truncated_normal_var(name, shape, dtype):
        return (tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=tf.truncated_normal_initializer(stddev=0.5)))
    def zero_var(name, shape, dtype):
        return (tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=tf.constant_initializer(0.0)))
    # First Convolutional Layer
    with tf.variable_scope('conv1') as scope:
        conv1_kernel = truncated_normal_var(name='conv_kernel1', shape=[5, 5, 3, 64], dtype=tf.float32)
        conv1 = tf.nn.conv2d(input_images, conv1_kernel, [1,1,1,1], padding='SAME')
        conv1_bias = zero_var(name='conv_bias1', shape=[64], dtype=tf.float32)
        conv1_add_bias = tf.nn.bias_add(conv1, conv1_bias)
        relu_conv1 = tf.nn.relu(conv1_add_bias)
    # max pooling
    pool1 = tf.nn.max_pool(relu_conv1, ksize=[1,3,3,1], strides=[1,2,2,1], padding='SAME', name='pool_layer1')

    # Local response normalization
    norm1 = tf.nn.lrn(pool1, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm1')

    # Second Convolutional Layer
    with tf.variable_scope('conv2') as scope:
        conv2_kernel = truncated_normal_var(name='conv_kernel2', shape=[5, 5, 64, 64], dtype=tf.float32)
        conv2 = tf.nn.conv2d(norm1, conv2_kernel, [1,1,1,1], padding='SAME')
        conv2_bias = zero_var(name='conv_bias2', shape=[64], dtype=tf.float32)
        conv2_add_bias = tf.nn.bias_add(conv2, conv2_bias)
        relu_conv2 = tf.nn.relu(conv2_add_bias)
    # max pooling
    pool2 = tf.nn.max_pool(relu_conv2, ksize=[1,3,3,1], strides=[1,2,2,1], padding='SAME', name='pool_layer2')

    # Local response normalization
    norm2 = tf.nn.lrn(pool2, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm2')

    # reshape
    reshaped_output = tf.reshape(norm2, [batch_size, -1])
    reshaped_dim = reshaped_output.get_shape()[1].value

    # First Fully Connected Layer
    with tf.variable_scope('full1') as scope:
        full_weight1 = truncated_normal_var(name='full_mult1', shape=[reshaped_dim, 384], dtype=tf.float32)
        full_bias1 = zero_var(name='full_bias1', shape=[384], dtype=tf.float32)
        full_layer1 = tf.nn.relu(tf.add(tf.matmul(reshaped_output, full_weight1), full_bias1))

    # Second Fully Connected Layer
    with tf.variable_scope('full2') as scope:
        full_weight2 = truncated_normal_var(name='full_mult2', shape=[384, 192], dtype=tf.float32)
        full_bias2 = zero_var(name='full_bias2', shape=[192], dtype=tf.float32)
        full_layer2 = tf.nn.relu(tf.add(tf.matmul(full_layer1, full_weight2), full_bias2))

    # Final
    with tf.variable_scope('full3') as scope:
        full_weight3 = truncated_normal_var(name='full_mult3', shape=[192, num_targets], dtype=tf.float32)
        full_bias3 = zero_var(name='full_bias3', shape=[num_targets], dtype=tf.float32)
        final_output = tf.add(tf.matmul(full_layer2, full_weight3), full_bias3)

    return(final_output)

def cifar_loss(logits, targets):
    print("cifar_loss---------------------0")
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    print("cifar_loss---------------------1")
    return (cross_entropy_mean)

def train_step(loss_value, generation_num):
    model_learning_rate = tf.train.exponential_decay(learning_rate, generation_num, num_gens_to_wait, lr_decay, staircase=True)
    my_optimizer = tf.train.GradientDescentOptimizer(model_learning_rate)
    train_step = my_optimizer.minimize(loss_value)
    return (train_step)

def accuracy_of_batch(logits, targets):
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    batch_predictions = tf.cast(tf.argmax(logits, 1), tf.int32)
    predicted_correctly = tf.equal(batch_predictions, targets)
    accuracy = tf.reduce_mean(tf.cast(predicted_correctly, tf.float32))
    return (accuracy)

images, targets = input_pipeline(batch_size, train_logical=True)
test_images, test_targets = input_pipeline(batch_size, train_logical=False)
print(images)

with tf.variable_scope('model_definition') as scope:
    model_output = cifar_cnn_model(images, batch_size)
    # use the same variables within scope
    scope.reuse_variables()
    test_output = cifar_cnn_model(test_images, batch_size)

loss = cifar_loss(model_output, targets)
accuracy = accuracy_of_batch(test_output, test_targets)
generation_num = tf.Variable(0, trainable=False)
train_op = train_step(loss, generation_num)

init = tf.global_variables_initializer()
sess.run(init)

# Initialize queue (This queue will feed into the model, so no placeholders necessary)
tf.train.start_queue_runners(sess=sess)

train_loss = []
test_accuracy = []
for i in range(generations):
    _, loss_value = sess.run([train_op, loss])
    print("222222222222222222222222")
    if (i+1)%output_every == 0:
        train_loss.append(loss_value)
        output = 'Generation {}: Loss = {:.5f}'.format((i+1), loss_value)
        print(output)
    if (i+1)%eval_every == 0:
        [temp_accuracy] = sess.run([accuracy])
        test_accuracy.append(temp_accuracy)
        acc_output = '--- Test Accuracy = {:.2f}%.'.format(100. * temp_accuracy)
        print(acc_output)

# Print loss and accuracy
# Matlotlib code to plot the loss and accuracies
eval_indices = range(0, generations, eval_every)
output_indices = range(0, generations, output_every)

# Plot loss over time
plt.plot(output_indices, train_loss, 'k-')
plt.title('Softmax Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Softmax Loss')
plt.show()

# Plot accuracy over time
plt.plot(eval_indices, test_accuracy, 'k-')
plt.title('Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.show()
pkxpp commented 5 years ago

I have sove the problem by replacing of the code of reading data, the code is frome official website

def _get_images_labels(batch_size, split, distords=False):
    """Returns Dataset for given split."""
    dataset = tfds.load(name='cifar10', split=split)
    print("load successed.")
    print(dataset)
    scope = 'data_augmentation' if distords else 'input'
    with tf.name_scope(scope):
        dataset = dataset.map(DataPreprocessor(distords), num_parallel_calls=10)
    # Dataset is small enough to be fully loaded on memory:
    dataset = dataset.prefetch(-1)
    dataset = dataset.repeat().batch(batch_size)
    iterator = dataset.make_one_shot_iterator()
    images_labels = iterator.get_next()
    images, labels = images_labels['input'], images_labels['target']
    tf.summary.image('images', images)
    return images, labels

class DataPreprocessor(object):
    """Applies transformations to dataset record."""

    def __init__(self, distords):
        self._distords = distords

    def __call__(self, record):
        """Process img for training or eval."""
        img = record['image']
        img = tf.cast(img, tf.float32)
        if self._distords:  # training
            # Randomly crop a [height, width] section of the image.
            img = tf.random_crop(img, [image_width, image_height, 3])
            # Randomly flip the image horizontally.
            img = tf.image.random_flip_left_right(img)
            # Because these operations are not commutative, consider randomizing
            # the order their operation.
            # NOTE: since per_image_standardization zeros the mean and makes
            # the stddev unit, this likely has no effect see tensorflow#1458.
            img = tf.image.random_brightness(img, max_delta=63)
            img = tf.image.random_contrast(img, lower=0.2, upper=1.8)
        else:  # Image processing for evaluation.
            # Crop the central [height, width] of the image.
            img = tf.image.resize_image_with_crop_or_pad(img, image_width, image_height)
        # Subtract off the mean and divide by the variance of the pixels.
        img = tf.image.per_image_standardization(img)
        return dict(input=img, target=record['label'])