Open fariyanishraq opened 1 year ago
import streamlit as st import plotly.express as px from pycaret.regression import setup, compare_models, pull, save_model, load_model import pandas_profiling import pandas as pd from streamlit_pandas_profiling import st_profile_report import os
if os.path.exists('./dataset.csv'): df = pd.read_csv('dataset.csv', index_col=None) else: df = pd.DataFrame() # default dataframe if one has not been provided
with st.sidebar: st.image("https://www.onepointltd.com/wp-content/uploads/2020/03/inno2.png") st.title("AutoNickML") choice = st.radio("Navigation", ["Upload","Profiling","Modelling", "Download"]) st.info("This project application helps you build and explore your data.")
if choice == "Upload": st.title("Upload Your Dataset") file = st.file_uploader("Upload Your Dataset") if file: df = pd.read_csv(file, index_col=None) df.to_csv('dataset.csv', index=None) st.dataframe(df)
if choice == "Profiling": st.title("Exploratory Data Analysis") profile_df = df.profile_report() st_profile_report(profile_df)
if choice == "Modelling": chosen_target = st.selectbox('Choose the Target Column', df.columns) if chosen_target and st.button('Run Modelling'): setup(df, target=chosen_target, silent=True) compare_df = pull() st.dataframe(compare_df) best_model = compare_models() save_model(best_model, 'best_model')
if choice == "Download": if os.path.exists('best_model.pkl'): with open('best_model.pkl', 'rb') as f: st.download_button('Download Model', f, file_name="best_model.pkl") else: st.warning("No model has been saved yet. Please run modelling first.")
Which python version is used because iam getting some numba errors while doing data profiling part
import streamlit as st import plotly.express as px from pycaret.regression import setup, compare_models, pull, save_model, load_model import pandas_profiling import pandas as pd from streamlit_pandas_profiling import st_profile_report import os
if os.path.exists('./dataset.csv'): df = pd.read_csv('dataset.csv', index_col=None) else: df = pd.DataFrame() # default dataframe if one has not been provided
with st.sidebar: st.image("https://www.onepointltd.com/wp-content/uploads/2020/03/inno2.png") st.title("AutoNickML") choice = st.radio("Navigation", ["Upload","Profiling","Modelling", "Download"]) st.info("This project application helps you build and explore your data.")
if choice == "Upload": st.title("Upload Your Dataset") file = st.file_uploader("Upload Your Dataset") if file: df = pd.read_csv(file, index_col=None) df.to_csv('dataset.csv', index=None) st.dataframe(df)
if choice == "Profiling": st.title("Exploratory Data Analysis") profile_df = df.profile_report() st_profile_report(profile_df)
if choice == "Modelling": chosen_target = st.selectbox('Choose the Target Column', df.columns) if chosen_target and st.button('Run Modelling'): setup(df, target=chosen_target, silent=True) compare_df = pull() st.dataframe(compare_df) best_model = compare_models() save_model(best_model, 'best_model')
if choice == "Download": if os.path.exists('best_model.pkl'): with open('best_model.pkl', 'rb') as f: st.download_button('Download Model', f, file_name="best_model.pkl") else: st.warning("No model has been saved yet. Please run modelling first.")