nicknochnack / TFODCourse

965 stars 924 forks source link

VERIFICATION_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection', 'builders', 'model_builder_tf2_test.py') # Verify Installation !python {VERIFICATION_SCRIPT} #92

Open deb-cod opened 2 years ago

deb-cod commented 2 years ago

2022-06-01 19:34:30.543360: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found 2022-06-01 19:34:30.543474: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. Traceback (most recent call last): File "E:\Fire_Detection\prime_folder\Tensorflow\models\research\object_detection\builders\model_builder_tf2_test.py", line 24, in from object_detection.builders import model_builder File "E:\Fire_Detection\prime_folder\Fire\lib\site-packages\object_detection-0.1-py3.9.egg\object_detection\builders\model_builder.py", line 23, in from object_detection.builders import anchor_generator_builder File "E:\Fire_Detection\prime_folder\Fire\lib\site-packages\object_detection-0.1-py3.9.egg\object_detection\builders\anchor_generator_builder.py", line 26, in from object_detection.protos import anchor_generator_pb2 File "E:\Fire_Detection\prime_folder\Fire\lib\site-packages\object_detection-0.1-py3.9.egg\object_detection\protos\anchor_generator_pb2.py", line 15, in from object_detection.protos import flexible_grid_anchor_generator_pb2 as objectdetection_dot_protos_dot_flexiblegridanchorgenerator__pb2 File "E:\Fire_Detection\prime_folder\Fire\lib\site-packages\object_detection-0.1-py3.9.egg\object_detection\protos\flexible_grid_anchor_generator_pb2.py", line 21, in _FLEXIBLEGRIDANCHORGENERATOR = DESCRIPTOR.message_types_by_name['FlexibleGridAnchorGenerator'] AttributeError: 'NoneType' object has no attribute 'message_types_by_name'

deb-cod commented 2 years ago

plzz.. help

mipranjal commented 2 years ago

hi you need to Install CUDA and cuDNN according to your tensorflow version as mentioned in the video