Closed nickojelly closed 3 years ago
For example the output of the neural net will be 1x8 matrix, This should predict the relative finish position of the dogs, with 1 being 1st and 0 being last.
Can either be a straight linear difference between each, i.e.
[ 1, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125, 0]
Or some ranking depending on the difference in finish time and first time, scaled between 0 and 1.
Semi-implemented in model.ipynb by creating a feature of inverse of place, in a new column called "place_adjust"
race_id track dist grade place dog_id box \
314539 12539914 Traralgon 525m Maiden Final 8.0 109032142 1
314535 12539914 Traralgon 525m Maiden Final 4.0 145856635 2
314537 12539914 Traralgon 525m Maiden Final 6.0 2131520028 3
314534 12539914 Traralgon 525m Maiden Final 3.0 167542442 4
314533 12539914 Traralgon 525m Maiden Final 2.0 128006011 5
314538 12539914 Traralgon 525m Maiden Final 7.0 1199430051 6
314536 12539914 Traralgon 525m Maiden Final 5.0 159734832 7
314532 12539914 Traralgon 525m Maiden Final 1.0 115367782 8
split_times split_margins run_time place_adj
314539 5.06 0.20 32.31 0.125000
314535 5.06 0.20 31.53 0.250000
314537 5.06 0.20 31.70 0.166667
314534 4.90 0.04 31.31 0.333333
314533 5.04 0.18 31.09 0.500000
314538 5.04 0.18 32.13 0.142857
314536 4.95 0.09 31.58 0.200000
314532 4.86 0.00 31.08 1.000000
This is implemented rudimentarily in model.ipynb at the moment, however it is only currently present in the full race results, will need to develop a method of transferring this adjusted results over to the full form format