Open yyds-xtt opened 2 weeks ago
没报错信息咋看啊
(1)-----------------------------------------------config/config.yaml 文件改成了下面----------------------------------------------- defaults:
experiment: name: metaworld-mt10 num_eval_episodes: 1 num_train_steps: 2500000 eval_only: False random_pos: False save_dir: '/data/zzm/CMTA-main/save_dir' builder: Experiment
replay_buffer: batch_size: 1280 agent: multitask: num_envs: 10 should_use_disjoint_policy: True should_use_disentangled_alpha: True should_use_task_encoder: True should_use_multi_head_policy: False actor_cfg: should_condition_model_on_task_info: False should_condition_encoder_on_task_info: True should_concatenate_task_info_with_encoder: True task_encoder_cfg: model_cfg: pretrained_embedding_cfg: should_use: False encoder: type_to_select: moe moe: # 添加 moe 部分 task_id_to_encoder_id_cfg: mode: rnn_attention # 配置具体的参数 num_experts: 6 (2)--------------------------------------------执行命令报错:-----------------------------------------------------------------
(torch1.8) zzm@amax:~/CMTA-main/scripts$ bash CMTA.sh 1
../main.py:11: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_path="config", config_name="config")
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/_internal/defaults_list.py:251: UserWarning: In 'config': Defaults list is missing _self_
. See https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/default_composition_order for more information
warnings.warn(msg, UserWarning)
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/core/default_element.py:128: UserWarning: In 'logbook/mtrl': Usage of deprecated keyword in package header '# @package group'.
See https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_package_header for more information
See {url} for more information"""
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/core/default_element.py:128: UserWarning: In 'agent/state_sac': Usage of deprecated keyword in package header '# @package group'.
See https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_package_header for more information
See {url} for more information"""
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/core/default_element.py:128: UserWarning: In 'env/metaworld-mt10': Usage of deprecated keyword in package header '# @package group'.
See https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_package_header for more information
See {url} for more information"""
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/core/default_element.py:128: UserWarning: In 'setup/metaworld': Usage of deprecated keyword in package header '# @package group'.
See https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_package_header for more information
See {url} for more information"""
/data/zzm/anaconda3/envs/torch1.8/lib/python3.6/site-packages/hydra/_internal/hydra.py:127: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default.
See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
configure_logging=with_log_configuration,
setup:
seed: 1
setup: metaworld
algo: CMTA_info2500_mt10
base_path: /data/zzm/CMTA-main/scripts
dir_name: logs_fix
save_dir: ${setup.base_path}/${setup.dir_name}/${setup.id}
device: cuda:0
id: CMTA_info2500_mt10_seed_1
description: Sample Task
tags: null
git:
commit_id: null
has_uncommitted_changes: null
issue_id: null
date: '2024-10-31 21:17:26'
slurm_id: '-1'
debug:
should_enable: false
env:
name: metaworld-mt10
num_envs: 10
benchmark:
target: metaworld.MT10
builder:
make_kwargs:
should_perform_reward_normalization: true
dummy:
target: metaworld.MT1
env_name: pick-place-v1
description:
reach-v1: Reach a goal position. Randomize the goal positions.
push-v1: Push the puck to a goal. Randomize puck and goal positions.
pick-place-v1: Pick and place a puck to a goal. Randomize puck and goal positions.
door-open-v1: Open a door with a revolving joint. Randomize door positions.
drawer-open-v1: Open a drawer. Randomize drawer positions.
drawer-close-v1: Push and close a drawer. Randomize the drawer positions.
button-press-topdown-v1: Press a button from the top. Randomize button positions.
peg-insert-side-v1: Insert a peg sideways. Randomize peg and goal positions.
window-open-v1: Push and open a window. Randomize window positions.
window-close-v1: Push and close a window. Randomize window positions.
ordered_task_list: null
agent:
name: state_sac
encoder_feature_dim: 64
num_layers: 0
num_filters: 0
builder:
target: mtrl.agent.sac.Agent
actor_cfg: ${agent.actor}
critic_cfg: ${agent.critic}
multitask_cfg: ${agent.multitask}
alpha_optimizer_cfg: ${agent.optimizers.alpha}
actor_optimizer_cfg: ${agent.optimizers.actor}
critic_optimizer_cfg: ${agent.optimizers.critic}
discount: 0.99
init_temperature: 1.0
actor_update_freq: 1
critic_tau: 0.005
critic_target_update_freq: 1
encoder_tau: 0.05
multitask:
num_envs: 10
should_use_disentangled_alpha: true
should_use_task_encoder: true
should_use_multi_head_policy: false
actor_cfg:
should_condition_model_on_task_info: false
should_condition_encoder_on_task_info: true
should_concatenate_task_info_with_encoder: true
task_encoder_cfg:
model_cfg:
pretrained_embedding_cfg:
should_use: false
encoder:
type_to_select: moe
moe:
task_id_to_encoder_id_cfg:
mode: rnn_attention
num_experts: 6
logbook:
target: ml_logger.logbook.make_config
write_to_console: false
logger_dir: ${setup.save_dir}
create_multiple_log_files: false
experiment:
num_eval_episodes: 1
num_train_steps: 2500000
eval_only: false
random_pos: false
save_dir: /data/zzm/CMTA-main/save_dir
builder: mtrl.experiment.multitask.Experiment
replay_buffer:
batch_size: 1280
[2024-10-31 21:17:26,428][default_logger][INFO] - {"setup": {"seed": 1, "setup": "metaworld", "algo": "CMTA_info2500_mt10", "base_path": "/data/zzm/CMTA-main/scripts", "dir_name": "logs_fix", "save_dir": "${setup.base_path}/${setup.dir_name}/${setup.id}", "device": "cuda:0", "id": "CMTA_info2500_mt10_seed_1", "description": "Sample Task", "tags": null, "git": {"commit_id": null, "has_uncommitted_changes": null, "issue_id": null}, "date": "2024-10-31 21:17:26", "slurm_id": "-1", "debug": {"should_enable": false}}, "env": {"name": "metaworld-mt10", "num_envs": 10, "benchmark": {"target": "metaworld.MT10"}, "builder": {"make_kwargs": {"should_perform_reward_normalization": true}}, "dummy": {"target": "metaworld.MT1", "env_name": "pick-place-v1"}, "description": {"reach-v1": "Reach a goal position. Randomize the goal positions.", "push-v1": "Push the puck to a goal. Randomize puck and goal positions.", "pick-place-v1": "Pick and place a puck to a goal. Randomize puck and goal positions.", "door-open-v1": "Open a door with a revolving joint. Randomize door positions.", "drawer-open-v1": "Open a drawer. Randomize drawer positions.", "drawer-close-v1": "Push and close a drawer. Randomize the drawer positions.", "button-press-topdown-v1": "Press a button from the top. Randomize button positions.", "peg-insert-side-v1": "Insert a peg sideways. Randomize peg and goal positions.", "window-open-v1": "Push and open a window. Randomize window positions.", "window-close-v1": "Push and close a window. Randomize window positions."}, "ordered_task_list": null}, "agent": {"name": "state_sac", "encoder_feature_dim": 64, "num_layers": 0, "num_filters": 0, "builder": {"target": "mtrl.agent.sac.Agent", "actor_cfg": "${agent.actor}", "critic_cfg": "${agent.critic}", "multitask_cfg": "${agent.multitask}", "alpha_optimizer_cfg": "${agent.optimizers.alpha}", "actor_optimizer_cfg": "${agent.optimizers.actor}", "critic_optimizer_cfg": "${agent.optimizers.critic}", "discount": 0.99, "init_temperature": 1.0, "actor_update_freq": 1, "critic_tau": 0.005, "critic_target_update_freq": 1, "encoder_tau": 0.05}, "multitask": {"num_envs": 10, "should_use_disentangled_alpha": true, "should_use_task_encoder": true, "should_use_multi_head_policy": false, "actor_cfg": {"should_condition_model_on_task_info": false, "should_condition_encoder_on_task_info": true, "should_concatenate_task_info_with_encoder": true}, "task_encoder_cfg": {"model_cfg": {"pretrained_embedding_cfg": {"should_use": false}}}}, "encoder": {"type_to_select": "moe", "moe": {"task_id_to_encoder_id_cfg": {"mode": "rnn_attention"}, "num_experts": 6}}}, "logbook": {"target": "ml_logger.logbook.make_config", "write_to_console": false, "logger_dir": "${setup.save_dir}", "create_multiple_log_files": false}, "experiment": {"num_eval_episodes": 1, "num_train_steps": 2500000, "eval_only": false, "random_pos": false, "save_dir": "/data/zzm/CMTA-main/save_dir", "builder": "mtrl.experiment.multitask.Experiment"}, "replay_buffer": {"batch_size": 1280}, "status": "RUNNING", "logbook_id": "0", "logbook_timestamp": "09:17:26PM CST Oct 31, 2024", "logbook_type": "metadata"} Starting Experiment at Thu Oct 31 21:17:26 2024 torch version = 1.8.0 Error executing job with overrides: ['setup=metaworld', 'setup.algo=CMTA_info2500_mt10', 'env=metaworld-mt10', 'agent=state_sac', 'experiment.num_eval_episodes=1', 'experiment.num_train_steps=2500000', 'experiment.eval_only=False', 'experiment.random_pos=False', 'setup.seed=1', 'setup.dir_name=logs_fix', 'replay_buffer.batch_size=1280', 'agent.multitask.num_envs=10', 'agent.multitask.should_use_disentangled_alpha=True', 'agent.multitask.should_use_task_encoder=True', 'agent.encoder.type_to_select=moe', 'agent.multitask.should_use_multi_head_policy=False', 'agent.encoder.moe.task_id_to_encoder_id_cfg.mode=rnn_attention', 'agent.encoder.moe.num_experts=6', 'agent.multitask.actor_cfg.should_condition_model_on_task_info=False', 'agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True', 'agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True', 'agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False'] Cannot instantiate config of type str. Top level config must be an OmegaConf DictConfig/ListConfig object, a plain dict/list, or a Structured Config class or instance.
Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
按照命令跑的就是跑不起来
https://github.com/facebookresearch/mtrl 你先试试把这个代码跑起来吧
大佬,config/config.yaml文件中 builder的值是什么呢?感觉是它没写对。刚接触 多任务强化学习,大佬指导一下呗 experiment: name: metaworld-mt10 num_eval_episodes: 1 num_train_steps: 2500000 eval_only: False random_pos: False save_dir: '/data/zzm/CMTA-main/save_dir' builder: Experiment
Getting Started We should install the local mtenv lib at first:
cd src/mtenv pip install -e . Then you can use the following instructions to run CMTA:
cd scripts bash CMTA.sh $seed$ $ seed $ can be 1,10,42,...