Closed shobhitagrawal1 closed 1 year ago
Hi,
I am sorry for the inconvenience - if you git clone
the repo the framework can be run without errors.
we will soon make a new release which will also include updated tutorials!
Please excuse the inconvenience, Zoe
thanks for replying will try your recommendation. Looking forward to your new tutorials!
Hi Zoe, everything ran fine, except that the parameter "loss ae" was not found, which I commented out for now. It seems it is not mentioned in the _module.py, init.. - i did not delve deeper (whether by default it uses MSE or Gaussian)... thanks !
i am sorry; to match current scvi
we changed "loss_ae"-> "gene_likelihood"
(if tour input is normalized pass "normal", and if raw counts use "nb"
)
Report
hi, really interesting method, congrats. Trying to run the demo running into several problems. the parameters commented out below throw errors at subsequent steps -- for exampl decoder_width is an unrecognised parameter for model etc. After commenting the parameters which were causing a problem : Support for
training_epoch_end
has been removed in v2.0.0.biolordTrainingPlan
implements this method. You can use theon_train_epoch_end
hook instead. To access outputs, save them in-memory as instance attributes. You can find migration examples in https://github.com/Lightning-AI/lightning/pull/16520Would be grateful for any assistance :)
module_params = {
"decoder_width": 1024,
}
model = biolord.Biolord( adata=adata, n_latent=32, model_name="spatio_temporal_infected", module_params=module_params, train_classifiers=False, split_key="split_random", )
trainer_params = { "n_epochs_warmup": 0,
"latent_lr": 1e-4,
"latent_wd": 1e-4,
"decoder_lr": 1e-4,
"decoder_wd": 1e-4,
model.train( max_epochs=500, batch_size=512, plan_kwargs=trainer_params, early_stopping=True, early_stopping_patience=20, check_val_every_n_epoch=10, num_workers=1, enable_checkpointing=False, )
Version information
anndata 0.9.1 biolord 0.0.1 matplotlib 3.7.2 numpy 1.24.4 pandas 2.0.3 scanpy 1.9.3 scipy 1.11.1 scvi 1.0.2 seaborn 0.12.2 session_info 1.0.0
PIL 9.4.0 absl NA aiohttp 3.8.4 aiosignal 1.3.1 anyio NA async_timeout 4.0.2 attr 23.1.0 backoff 2.2.1 brotli NA bs4 4.12.2 certifi 2023.05.07 cffi 1.15.1 charset_normalizer 2.0.4 chex 0.1.7 click 8.1.4 contextlib2 NA croniter NA cycler 0.10.0 cython_runtime NA dateutil 2.8.2 deepdiff 6.3.1 docrep 0.3.2 etils 1.3.0 fastapi 0.100.0 flax 0.7.0 frozenlist 1.3.3 fsspec 2023.6.0 gmpy2 2.1.2 h5py 3.9.0 idna 3.4 importlib_metadata NA importlib_resources NA jax 0.4.13 jaxlib 0.4.13 joblib 1.3.1 kiwisolver 1.4.4 lightning 2.0.5 lightning_cloud NA lightning_fabric 2.0.5 lightning_utilities 0.9.0 llvmlite 0.40.1 ml_collections NA ml_dtypes 0.2.0 mpl_toolkits NA mpmath 1.2.1 msgpack 1.0.5 mudata 0.2.3 multidict 6.0.4 multipart 0.0.6 multipledispatch 0.6.0 natsort 8.4.0 numba 0.57.1 numpyro 0.12.1 nvfuser NA opt_einsum v3.3.0 optax 0.1.5 ordered_set 4.1.0 packaging 23.1 patsy 0.5.3 pkg_resources NA psutil 5.9.5 pydantic 1.10.11 pygments 2.15.1 pyparsing 3.0.9 pyro 1.8.5 pytorch_lightning 2.0.5 pytz 2023.3 requests 2.29.0 rich NA setuptools 67.8.0 six 1.16.0 sklearn 1.3.0 sniffio 1.3.0 socks 1.7.1 soupsieve 2.4.1 sparse 0.14.0 starlette 0.27.0 statsmodels 0.14.0 sympy 1.11.1 threadpoolctl 3.1.0 toolz 0.12.0 torch 2.0.1 torchaudio 2.0.2 torchmetrics 1.0.0 torchvision 0.15.2 tqdm 4.65.0 tree 0.1.8 typing_extensions NA urllib3 1.26.16 uvicorn 0.22.0 websocket 1.6.1 websockets 11.0.3 xarray 2023.6.0 yaml 6.0 yarl 1.9.2 zipp NA zoneinfo NA
Python 3.9.17 (main, Jul 5 2023, 20:41:20) [GCC 11.2.0] Linux-4.18.0-305.12.1.el8_4.x86_64-x86_64-with-glibc2.31