Closed UNCcrawler closed 6 years ago
The PNLS step is a common error in nlme
. You can adjust this factor up, with the following code:
## Note the theo_md is the same dataset as you specified but is included in the nlmixr package
fit <- nlme_ode(theo_md, model=ode, par_model=specs, par_trans=mypar,
response="centr", response.scaler="V",control=nlmeControl(pnlsTol=0.1))
Also note that I don't see the lCL
parameter in your ODE specification. So it really shouldn't fit very well.
If you use the unifed model structure you can specify a similar model with:
theo.mod <- function() {
ini({
tka <- .5 # Log Ka
tcl <- -3.2 # Log Cl
tv <- -1 # Log V
eta.ka ~ 1
eta.cl ~ 2
eta.v ~ 1
add.err <- 0.1
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.err)
})
}
Then the nlme can be run by:
> fit <- nlmixr(theo.mod,theo_md, calc.resid=FALSE,control=nlmeControl(pnlsTol=0.01))
> fit
Nonlinear mixed-effects model fit by maximum likelihood
Model: DV ~ (nlmixr::nlmeModList("user_fn"))(tka, tcl, tv, TIME, ID)
Log-likelihood: -417.3443
Fixed: list(tka + tcl + tv ~ 1)
tka tcl tv
0.2855648 -3.1923786 -0.8096679
Random effects:
Formula: list(tka ~ 1, tcl ~ 1, tv ~ 1)
Level: ID
Structure: Diagonal
tka tcl tv Residual
StdDev: 0.4457658 0.2173986 0.123592 1.018126
Number of Observations: 264
Number of Groups: 12
If you want the nlmixr FOCEi-based residulas and objective function calculated you can use:
> fit <- nlmixr(theo.mod,theo_md, calc.resid=TRUE,control=nlmeControl(pnlsTol=0.01))
> fit
-- nlmixr nlme fit by maximum likelihood (ODE; µ-ref & covs) -------------------
FOCEi-based goodness of fit metrics:
OBJF AIC BIC Log-likelihood Condition Number
349.5017 363.5017 388.5333 -174.7508 40.78343
nlme-based goodness of fit metrics:
AIC BIC Log-likelihood
848.6887 873.7203 -417.3443
-- Time (sec; fit$time): -------------------------------------------------------
nlme setup FOCEi Evaulate covariance table
elapsed 3.02 33.93 0.11 0 0.23
-- Parameters (fit$par.fixed): -------------------------------------------------
Parameter Estimate SE %RSE Back-transformed(95%CI) BSV(CV%)
tka Log Ka 0.286 0.139 48.6 1.33 (1.01, 1.75) 46.9%
tcl Log Cl -3.19 0.0664 2.08 0.0411 (0.0361, 0.0468) 22.0%
tv Log V -0.810 0.0438 5.41 0.445 (0.408, 0.485) 12.4%
add.err add.err 1.02 1.02
Shrink(SD)%
tka 1.86%
tcl 0.543%
tv 13.1%
add.err 5.66%
No correlations in between subject variability (BSV) matrix
Full BSV covariance (fit$omega) or correlation (fit$omega.R; diagonals=SDs)
Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink
-- Fit Data (object fit is a modified data.frame): -----------------------------
# A tibble: 264 x 21
ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES
* <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0.74 0 0.74 0.727 0 0.74 0.727 0 0.74 0.727
2 1 0.25 2.84 2.53 0.315 0.221 3.49 -0.649 -0.637 2.37 0.471 0.279
3 1 0.570 6.57 4.66 1.91 1.06 6.29 0.279 0.274 4.44 2.13 0.991
# ... with 261 more rows, and 9 more variables: eta.ka <dbl>, eta.cl <dbl>,
# eta.v <dbl>, depot <dbl>, center <dbl>, ka <dbl>, cl <dbl>, v <dbl>,
# cp <dbl>
The good thing about this type of model specification is you can switch estimation methods easily. For example, if you wanted to use the more precise saem
algoritm you can simply change "nlme"
to "saem"
.
fit <- nlmixr(theo.mod,theo_md, est="saem")
> fit
-- nlmixr SAEM fit (ODE); OBJF calculated from FOCEi approximation -------------
OBJF AIC BIC Log-likelihood Condition Number
349.6105 363.6105 388.6422 -174.8053 176.3777
-- Time (sec; fit$time): -------------------------------------------------------
saem setup Likelihood Calculation covariance table
elapsed 123.53 23.29 0.1 0 0.21
-- Parameters (fit$par.fixed): -------------------------------------------------
Parameter Estimate SE %RSE Back-transformed(95%CI) BSV(CV%)
tka Log Ka 0.282 0.137 48.6 1.33 (1.01, 1.73) 47.7%
tcl Log Cl -3.19 0.0654 2.05 0.0413 (0.0363, 0.0469) 22.2%
tv Log V -0.810 0.0402 4.97 0.445 (0.411, 0.482) 12.3%
add.err add.err 1.02 1.02
Shrink(SD)%
tka 1.15%
tcl 0.881%
tv 13.5%
add.err 5.59%
No correlations in between subject variability (BSV) matrix
Full BSV covariance (fit$omega) or correlation (fit$omega.R; diagonals=SDs)
Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink
-- Fit Data (object fit is a modified data.frame): -----------------------------
# A tibble: 264 x 21
ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES
* <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0.74 0 0.74 0.727 0 0.74 0.727 0 0.74 0.727
2 1 0.25 2.84 2.52 0.323 0.226 3.50 -0.660 -0.649 2.35 0.486 0.285
3 1 0.570 6.57 4.65 1.92 1.06 6.32 0.254 0.250 4.41 2.16 0.989
# ... with 261 more rows, and 9 more variables: eta.ka <dbl>, eta.cl <dbl>,
# eta.v <dbl>, depot <dbl>, center <dbl>, ka <dbl>, cl <dbl>, v <dbl>,
# cp <dbl>
>
Also note that the theopyhille dataset has a different dose specification than a usual PK dataset (Issue #36).
Thank you, matt. I copied the theo_md example from the help page. I did notice "not run" on the page but ignored it :) Thanks for taking the time helping me!
On Tue, May 22, 2018 at 11:20 PM, Matthew Fidler notifications@github.com wrote:
The PNLS step is a common error in nlme. You can adjust this factor up, with the following code:
Note the theo_md is the same dataset as you specified but is included in the nlmixr packagefit <- nlme_ode(theo_md, model=ode, par_model=specs, par_trans=mypar,
response="centr", response.scaler="V",control=nlmeControl(pnlsTol=0.1))
Also note that I don't see the lCL parameter in your ODE specification. So it really shouldn't fit very well.
If you use the unifed model structure you can specify a similar model with:
theo.mod <- function() { ini({ tka <- .5 # Log Ka tcl <- -3.2 # Log Cl tv <- -1 # Log V eta.ka ~ 1 eta.cl ~ 2 eta.v ~ 1 add.err <- 0.1 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) d/dt(depot) = -ka depot d/dt(center) = ka depot - cl / v * center cp = center / v cp ~ add(add.err) }) }
Then the nlme can be run by:
fit <- nlmixr(theo.mod,theo_md, calc.resid=FALSE,control=nlmeControl(pnlsTol=0.01))
**Iteration 1 LME step: Loglik: -417.1519, nlminb iterations: 1 reStruct parameters: ID1 ID2 ID3 1.086602 1.481263 2.198073 Beginning PNLS step: .. completed fit_nlme() step. PNLS step: RSS = 273.659 fixed effects: 0.2855648 -3.192379 -0.8096679 iterations: 6 Convergence crit. (must all become <= tolerance = 1e-05): fixed reStruct 0.7509161 0.3156169
**Iteration 2 LME step: Loglik: -417.3443, nlminb iterations: 1 reStruct parameters: ID1 ID2 ID3 0.8259257 1.5439870 2.1087332 Beginning PNLS step: .. completed fit_nlme() step. PNLS step: RSS = 273.659 fixed effects: 0.2855648 -3.192379 -0.8096679 iterations: 1 Convergence crit. (must all become <= tolerance = 1e-05): fixed reStruct 0.000000e+00 6.685185e-09 Warning message: In nlmixrUI.nlme.var(obj) : Initial condition for additive error ignored with nlme
fitNonlinear mixed-effects model fit by maximum likelihood Model: DV ~ (nlmixr::nlmeModList("user_fn"))(tka, tcl, tv, TIME, ID) Log-likelihood: -417.3443 Fixed: list(tka + tcl + tv ~ 1) tka tcl tv 0.2855648 -3.1923786 -0.8096679 Random effects: Formula: list(tka ~ 1, tcl ~ 1, tv ~ 1) Level: ID Structure: Diagonal tka tcl tv ResidualStdDev: 0.4457658 0.2173986 0.123592 1.018126 Number of Observations: 264Number of Groups: 12
If you want the nlmixr FOCEi-based residulas and objective function calculated you can use:
fit <- nlmixr(theo.mod,theo_md, calc.resid=TRUE,control=nlmeControl(pnlsTol=0.01))
Iteration 1LME step: Loglik: -417.1519, nlminb iterations: 1reStruct parameters: ID1 ID2 ID3 1.086602 1.481263 2.198073 Beginning PNLS step: .. completed fit_nlme() step.PNLS step: RSS = 273.659 fixed effects: 0.2855648 -3.192379 -0.8096679 iterations: 6 Convergence crit. (must all become <= tolerance = 1e-05): fixed reStruct 0.7509161 0.3156169 Iteration 2LME step: Loglik: -417.3443, nlminb iterations: 1reStruct parameters: ID1 ID2 ID3 0.8259257 1.5439870 2.1087332 Beginning PNLS step: .. completed fit_nlme() step.PNLS step: RSS = 273.659 fixed effects: 0.2855648 -3.192379 -0.8096679 iterations: 1 Convergence crit. (must all become <= tolerance = 1e-05): fixed reStruct 0.000000e+00 6.685185e-09 ## Calculate ETA-based prediction and error derivatives:Calculate Jacobian...................done.Calculate sensitivities.......done.## Calculate d(f)/d(eta) ## ...## done## ...## doneThe model-based sensitivities have been calculated.Calculating Table Variables...doneWarning message:In nlmixrUI.nlme.var(obj) : Initial condition for additive error ignored with nlme
fit-- nlmixr nlme fit by maximum likelihood (ODE; µ-ref & covs) -------------------FOCEi-based goodness of fit metrics: OBJF AIC BIC Log-likelihood Condition Number 349.5017 363.5017 388.5333 -174.7508 40.78343 nlme-based goodness of fit metrics: AIC BIC Log-likelihood 848.6887 873.7203 -417.3443 -- Time (sec; fit$time): ------------------------------------------------------- nlme setup FOCEi Evaulate covariance tableelapsed 3.02 33.93 0.11 0 0.23 -- Parameters (fit$par.fixed): ------------------------------------------------- Parameter Estimate SE %RSE Back-transformed(95%CI) BSV(CV%)tka Log Ka 0.286 0.139 48.6 1.33 (1.01, 1.75) 46.9%tcl Log Cl -3.19 0.0664 2.08 0.0411 (0.0361, 0.0468) 22.0%tv Log V -0.810 0.0438 5.41 0.445 (0.408, 0.485) 12.4%add.err add.err 1.02 1.02 Shrink(SD)%tka 1.86% tcl 0.543% tv 13.1% add.err 5.66%
No correlations in between subject variability (BSV) matrix Full BSV covariance (fit$omega) or correlation (fit$omega.R; diagonals=SDs) Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink -- Fit Data (object fit is a modified data.frame): -----------------------------# A tibble: 264 x 21 ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES*
1 1 0 0.74 0 0.74 0.727 0 0.74 0.727 0 0.74 0.7272 1 0.25 2.84 2.53 0.315 0.221 3.49 -0.649 -0.637 2.37 0.471 0.2793 1 0.570 6.57 4.66 1.91 1.06 6.29 0.279 0.274 4.44 2.13 0.991# ... with 261 more rows, and 9 more variables: eta.ka , eta.cl ,# eta.v , depot , center , ka , cl , v ,# cp The good thing about this type of model specification is you can switch estimation methods easily. For example, if you wanted to use the more precise saem algoritm you can simply change "nlme" to "saem".
fit <- nlmixr(theo.mod,theo_md, est="saem")
Compiling RxODE differential equations...done.PKG_CXXFLAGS=-Ic:/R/nlmixr/R/library/nlmixr/include -Ic:/R/nlmixr/R/library/STANHE~1/include -Ic:/R/nlmixr/R/library/Rcpp/include -Ic:/R/nlmixr/R/library/RCPPAR~1/include -Ic:/R/nlmixr/R/library/RCPPEI~1/include -Ic:/R/nlmixr/R/library/BH/includePKG_LIBS= $(BLAS_LIBS) $(LAPACK_LIBS)c:/R/nlmixr/rtools/mingw_64/bin/g++ -I"c:/R/nlmixr/R/include" -DNDEBUG -Ic:/R/nlmixr/R/library/nlmixr/include -Ic:/R/nlmixr/R/library/STANHE~1/include -Ic:/R/nlmixr/R/library/Rcpp/include -Ic:/R/nlmixr/R/library/RCPPAR~1/include -Ic:/R/nlmixr/R/library/RCPPEI~1/include -Ic:/R/nlmixr/R/library/BH/include -O2 -Wall -mtune=generic -c saem1664c61dc195x64.cpp -o saem1664c61dc195x64.oc:/R/nlmixr/rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o saem1664c61dc195x64.dll tmp.def saem1664c61dc195x64.o -Lc:/R/nlmixr/R/bin/x64 -lRblas -Lc:/R/nlmixr/R/bin/x64 -lRlapack -Lc:/R/nlmixr/R/bin/x64 -lRdone.1: 0.0022 -2.9098 -0.6295 0.9500 1.9000 0.9500 9.00922: 0.0491 -3.0457 -0.8193 0.9025 1.8050 0.9025 4.61653: 0.0733 -3.1430 -0.9340 0.8574 1.7147 0.8574 2.16884: 0.0604 -3.1649 -0.9034 0.8145 1.6290 0.8145 1.78065: 0.0713 -3.1696 -0.9745 0.7738 1.5476 0.7738 1.48256: 0.0531 -3.1564 -0.9802 0.7351 1.4702 0.7351 1.32787: 0.0594 -3.1676 -0.9962 0.6983 1.3967 0.6983 1.24018: 0.0599 -3.1722 -0.9722 0.6634 1.3268 0.6634 1.15699: 0.1141 -3.1712 -0.9320 0.6302 1.2605 0.6302 1.164410: 0.0886 -3.1592 -0.9361 0.5987 1.1975 0.5987 1.202611: 0.1509 -3.1552 -0.9285 0.5688 1.1376 0.5688 1.167012: 0.1522 -3.1600 -0.9225 0.5404 1.0807 0.5404 1.170613: 0.1107 -3.1638 -0.9258 0.5133 1.0267 0.5133 1.148914: 0.1537 -3.1695 -0.9175 0.4877 0.9753 0.4877 1.138815: 0.1766 -3.1647 -0.9011 0.4633 0.9266 0.4633 1.143916: 0.1808 -3.1652 -0.8825 0.4401 0.8803 0.4401 1.109317: 0.2153 -3.1677 -0.8619 0.4547 0.8362 0.4181 1.092718: 0.2136 -3.1764 -0.8806 0.4363 0.7944 0.3972 1.123119: 0.2236 -3.1639 -0.8903 0.4314 0.7547 0.3774 1.103520: 0.2470 -3.1872 -0.8759 0.4272 0.7170 0.3585 1.055621: 0.2181 -3.1724 -0.8619 0.4058 0.6811 0.3406 1.049222: 0.2056 -3.1660 -0.8709 0.3856 0.6471 0.3235 1.060123: 0.2531 -3.1590 -0.8723 0.3663 0.6147 0.3074 1.070124: 0.2225 -3.1645 -0.8676 0.3480 0.5840 0.2920 1.058825: 0.2303 -3.1642 -0.8598 0.3499 0.5548 0.2774 1.059526: 0.2422 -3.1645 -0.8877 0.3934 0.5270 0.2635 1.065727: 0.2223 -3.1538 -0.8752 0.3737 0.5007 0.2503 1.061728: 0.2272 -3.1628 -0.8769 0.3760 0.4757 0.2378 1.051029: 0.2244 -3.1639 -0.8694 0.3572 0.4519 0.2259 1.052330: 0.2317 -3.1746 -0.8710 0.3450 0.4293 0.2146 1.036931: 0.2001 -3.1867 -0.8516 0.3278 0.4078 0.2039 1.097832: 0.1941 -3.2189 -0.8517 0.3533 0.3874 0.1937 1.073433: 0.1700 -3.2056 -0.8552 0.3550 0.3681 0.1840 1.059434: 0.2746 -3.1755 -0.8580 0.3961 0.3496 0.1748 1.028435: 0.2480 -3.1766 -0.8652 0.3919 0.3322 0.1661 1.041436: 0.2384 -3.1870 -0.8533 0.3723 0.3156 0.1578 1.055637: 0.2063 -3.1728 -0.8580 0.3814 0.2998 0.1499 1.066038: 0.3406 -3.1650 -0.8113 0.3623 0.2848 0.1424 1.067239: 0.3268 -3.1796 -0.8159 0.3442 0.2706 0.1353 1.020040: 0.2709 -3.1861 -0.7982 0.3270 0.2570 0.1285 1.075541: 0.2489 -3.2002 -0.8059 0.3106 0.2442 0.1221 1.071842: 0.2822 -3.1942 -0.8080 0.2951 0.2320 0.1160 1.042443: 0.2564 -3.1973 -0.8134 0.2804 0.2204 0.1102 1.051744: 0.2273 -3.1934 -0.8328 0.2663 0.2093 0.1047 1.053045: 0.2223 -3.1801 -0.8383 0.2530 0.1989 0.0994 1.028946: 0.2287 -3.1849 -0.8154 0.2404 0.1889 0.0945 1.058447: 0.2935 -3.2079 -0.7886 0.2284 0.1795 0.0897 1.069148: 0.3212 -3.1887 -0.7912 0.2169 0.1705 0.0853 1.065449: 0.2807 -3.1776 -0.8029 0.2061 0.1620 0.0810 1.081950: 0.3044 -3.1945 -0.7945 0.2106 0.1539 0.0769 1.053651: 0.2853 -3.1916 -0.8175 0.2096 0.1462 0.0731 1.047752: 0.3093 -3.1844 -0.8073 0.1991 0.1389 0.0694 1.015453: 0.2943 -3.2027 -0.8098 0.2028 0.1319 0.0660 1.021854: 0.2188 -3.1804 -0.8379 0.2146 0.1253 0.0627 1.056255: 0.2393 -3.1871 -0.8157 0.2039 0.1191 0.0595 1.071256: 0.2790 -3.1966 -0.8087 0.2017 0.1131 0.0566 1.080857: 0.2803 -3.2060 -0.7980 0.2143 0.1075 0.0537 1.067258: 0.2935 -3.1939 -0.8137 0.2239 0.1021 0.0510 1.033059: 0.2886 -3.1967 -0.8052 0.2127 0.0970 0.0485 1.051360: 0.2974 -3.1946 -0.8052 0.2274 0.0921 0.0461 1.012961: 0.3015 -3.1723 -0.7991 0.2458 0.0875 0.0438 1.064862: 0.2934 -3.1837 -0.7944 0.2335 0.0832 0.0416 1.040563: 0.3428 -3.2005 -0.7861 0.2218 0.0790 0.0395 1.027464: 0.3282 -3.1796 -0.7920 0.2107 0.0750 0.0375 1.015565: 0.3417 -3.1913 -0.8048 0.2059 0.0713 0.0356 1.020666: 0.2953 -3.1955 -0.8029 0.1956 0.0677 0.0339 1.015367: 0.2859 -3.2057 -0.8075 0.1859 0.0643 0.0322 1.014768: 0.2685 -3.2041 -0.7757 0.1766 0.0611 0.0306 1.060669: 0.2802 -3.2080 -0.7987 0.1745 0.0581 0.0290 1.072070: 0.2694 -3.2038 -0.7959 0.1854 0.0552 0.0276 1.052271: 0.2673 -3.1774 -0.8253 0.1810 0.0524 0.0262 1.065072: 0.2300 -3.1908 -0.8217 0.1720 0.0498 0.0252 1.029173: 0.2901 -3.1839 -0.7974 0.1634 0.0473 0.0239 1.034574: 0.2930 -3.2065 -0.7963 0.1649 0.0449 0.0227 1.037575: 0.2932 -3.2037 -0.7703 0.1744 0.0504 0.0216 1.032876: 0.3265 -3.1937 -0.7645 0.1664 0.0479 0.0205 1.066677: 0.3755 -3.1932 -0.7773 0.1647 0.0455 0.0205 1.066578: 0.3553 -3.2002 -0.7729 0.1800 0.0444 0.0195 1.030679: 0.3374 -3.1981 -0.7792 0.2168 0.0447 0.0185 1.080080: 0.3249 -3.1983 -0.7776 0.2395 0.0425 0.0176 1.095381: 0.3282 -3.2026 -0.7801 0.2275 0.0446 0.0201 1.068982: 0.3220 -3.2076 -0.7772 0.2162 0.0437 0.0201 1.055983: 0.3093 -3.1860 -0.7822 0.2054 0.0534 0.0191 1.060284: 0.2996 -3.1881 -0.8025 0.1951 0.0507 0.0182 1.029585: 0.3159 -3.1949 -0.7842 0.1960 0.0482 0.0173 1.056686: 0.3011 -3.1908 -0.7883 0.1935 0.0488 0.0183 1.020887: 0.3153 -3.2080 -0.7977 0.1838 0.0464 0.0174 1.040888: 0.2613 -3.2133 -0.7914 0.1935 0.0441 0.0189 1.033789: 0.3016 -3.2012 -0.7942 0.1869 0.0457 0.0183 1.019790: 0.2864 -3.2079 -0.8027 0.1906 0.0434 0.0174 1.033691: 0.2717 -3.2127 -0.8267 0.2040 0.0412 0.0165 1.033992: 0.2676 -3.1792 -0.8264 0.2474 0.0429 0.0187 1.041793: 0.2363 -3.1861 -0.8306 0.2435 0.0458 0.0177 1.040194: 0.2639 -3.1889 -0.8266 0.2313 0.0464 0.0168 1.019695: 0.2611 -3.1837 -0.8183 0.2355 0.0479 0.0160 1.026996: 0.2310 -3.1973 -0.8201 0.2573 0.0455 0.0152 1.028597: 0.2779 -3.1817 -0.8129 0.2444 0.0433 0.0152 1.054398: 0.2712 -3.1715 -0.8150 0.2322 0.0468 0.0147 1.050999: 0.2777 -3.1937 -0.8204 0.2206 0.0464 0.0159 1.0236100: 0.2655 -3.1876 -0.8174 0.2096 0.0445 0.0151 1.0111101: 0.2186 -3.1929 -0.8390 0.1991 0.0466 0.0144 1.0039102: 0.2120 -3.1964 -0.8456 0.1891 0.0448 0.0148 1.0349103: 0.2613 -3.1936 -0.8217 0.1842 0.0425 0.0141 1.0311104: 0.2609 -3.1718 -0.8149 0.1977 0.0426 0.0134 1.0503105: 0.2669 -3.1862 -0.8177 0.2091 0.0499 0.0127 1.0509106: 0.2685 -3.1857 -0.8191 0.2151 0.0554 0.0121 1.0484107: 0.2778 -3.1660 -0.8248 0.2169 0.0599 0.0115 1.0684108: 0.2632 -3.1839 -0.8271 0.2061 0.0569 0.0114 1.0320109: 0.2550 -3.1851 -0.8130 0.2112 0.0619 0.0109 1.0475110: 0.2679 -3.1968 -0.8267 0.2007 0.0588 0.0126 1.0203111: 0.2727 -3.1853 -0.8220 0.2046 0.0559 0.0135 1.0105112: 0.2616 -3.1902 -0.8350 0.2099 0.0583 0.0129 1.0321113: 0.2483 -3.1657 -0.8326 0.1994 0.0554 0.0122 1.0222114: 0.2539 -3.1724 -0.8313 0.1894 0.0609 0.0116 1.0113115: 0.2841 -3.1900 -0.8209 0.1816 0.0578 0.0129 1.0348116: 0.2798 -3.1897 -0.8080 0.2003 0.0549 0.0141 1.0431117: 0.2463 -3.1769 -0.8099 0.1903 0.0522 0.0137 1.0368118: 0.2754 -3.1872 -0.8202 0.1897 0.0510 0.0130 1.0143119: 0.2676 -3.1889 -0.8155 0.2215 0.0484 0.0182 1.0196120: 0.2372 -3.1957 -0.8179 0.2345 0.0460 0.0184 1.0173121: 0.2666 -3.1789 -0.8145 0.2228 0.0480 0.0185 1.0359122: 0.2810 -3.2002 -0.8033 0.2117 0.0456 0.0176 1.0317123: 0.3266 -3.1694 -0.8161 0.2210 0.0480 0.0167 1.0091124: 0.3009 -3.1621 -0.8211 0.2326 0.0497 0.0159 1.0143125: 0.3114 -3.1619 -0.8276 0.2210 0.0504 0.0151 1.0146126: 0.2727 -3.1606 -0.8359 0.2280 0.0552 0.0143 1.0277127: 0.2627 -3.1728 -0.8378 0.2166 0.0524 0.0158 1.0402128: 0.2402 -3.1735 -0.8317 0.2417 0.0540 0.0181 1.0559129: 0.2771 -3.1733 -0.8256 0.2763 0.0513 0.0172 1.0168130: 0.2887 -3.1759 -0.8254 0.2637 0.0528 0.0174 0.9922131: 0.2760 -3.1877 -0.8345 0.2506 0.0593 0.0194 1.0204132: 0.2205 -3.1712 -0.8440 0.2380 0.0563 0.0184 1.0344133: 0.2600 -3.1777 -0.8349 0.2261 0.0535 0.0196 1.0664134: 0.2856 -3.1969 -0.8045 0.2148 0.0508 0.0270 1.0303135: 0.2693 -3.1858 -0.8095 0.2113 0.0483 0.0256 1.0317136: 0.3041 -3.1913 -0.7943 0.2007 0.0459 0.0243 1.0072137: 0.3179 -3.2044 -0.7899 0.1916 0.0436 0.0231 1.0234138: 0.3144 -3.1932 -0.7891 0.1855 0.0414 0.0220 1.0134139: 0.3089 -3.1904 -0.7809 0.1927 0.0425 0.0226 1.0194140: 0.3252 -3.1830 -0.7751 0.2047 0.0408 0.0214 1.0283141: 0.3201 -3.1995 -0.7780 0.2165 0.0451 0.0204 1.0178142: 0.3393 -3.2020 -0.7754 0.2138 0.0497 0.0193 1.0307143: 0.3001 -3.1903 -0.7878 0.2031 0.0484 0.0184 1.0366144: 0.3368 -3.1932 -0.7770 0.1930 0.0460 0.0175 1.0313145: 0.3306 -3.1795 -0.8050 0.2143 0.0489 0.0166 0.9969146: 0.2796 -3.1853 -0.8019 0.2115 0.0504 0.0175 1.0293147: 0.2368 -3.1857 -0.8202 0.2010 0.0496 0.0166 1.0486148: 0.2682 -3.1926 -0.8020 0.1909 0.0471 0.0158 1.0565149: 0.2667 -3.1914 -0.8092 0.1814 0.0544 0.0150 1.0490150: 0.3028 -3.1943 -0.8090 0.1875 0.0545 0.0142 1.0617151: 0.2473 -3.1866 -0.8163 0.1810 0.0518 0.0135 1.0601152: 0.2443 -3.1891 -0.8214 0.1910 0.0575 0.0129 1.0446153: 0.2659 -3.1845 -0.8110 0.2301 0.0588 0.0136 1.0371154: 0.3238 -3.1691 -0.8017 0.2183 0.0552 0.0174 1.0558155: 0.2942 -3.1965 -0.8044 0.2433 0.0437 0.0215 1.0303156: 0.2904 -3.1860 -0.7860 0.1958 0.0450 0.0215 1.0280157: 0.2851 -3.1985 -0.7937 0.1786 0.0375 0.0227 1.0421158: 0.3207 -3.1970 -0.7840 0.1947 0.0377 0.0209 1.0186159: 0.2959 -3.1863 -0.7957 0.1830 0.0404 0.0217 1.0202160: 0.3243 -3.2153 -0.7835 0.2168 0.0443 0.0185 1.0208161: 0.2858 -3.2057 -0.7993 0.1988 0.0397 0.0241 1.0050162: 0.2951 -3.1789 -0.8091 0.2195 0.0436 0.0226 1.0214163: 0.3340 -3.1861 -0.8086 0.1896 0.0356 0.0186 1.0286164: 0.3346 -3.1962 -0.7978 0.1841 0.0349 0.0185 1.0376165: 0.3306 -3.2070 -0.7862 0.1878 0.0414 0.0167 1.0553166: 0.3483 -3.1856 -0.7808 0.2012 0.0398 0.0171 1.0427167: 0.3149 -3.1774 -0.7863 0.1912 0.0439 0.0259 1.0600168: 0.3247 -3.1802 -0.7929 0.1763 0.0456 0.0289 1.0460169: 0.2849 -3.1659 -0.8165 0.1616 0.0434 0.0227 1.0580170: 0.2989 -3.1865 -0.8125 0.1573 0.0373 0.0192 1.0323171: 0.2680 -3.1801 -0.8207 0.1663 0.0445 0.0187 0.9920172: 0.2594 -3.1754 -0.8223 0.1631 0.0411 0.0201 1.0083173: 0.2691 -3.1692 -0.8323 0.1563 0.0477 0.0217 1.0213174: 0.2795 -3.1719 -0.8121 0.1614 0.0437 0.0196 1.0340175: 0.2828 -3.1773 -0.8219 0.2017 0.0470 0.0218 1.0045176: 0.2505 -3.1769 -0.8146 0.1945 0.0499 0.0184 1.0329177: 0.2929 -3.1982 -0.8010 0.2102 0.0499 0.0176 1.0293178: 0.2900 -3.1928 -0.8011 0.2036 0.0523 0.0195 1.0206179: 0.3106 -3.1581 -0.8042 0.2108 0.0583 0.0154 1.0441180: 0.2707 -3.1779 -0.8084 0.1622 0.0505 0.0177 1.0597181: 0.2641 -3.1886 -0.8381 0.1787 0.0510 0.0194 1.0409182: 0.2292 -3.1615 -0.8415 0.1819 0.0586 0.0177 1.0594183: 0.2450 -3.1699 -0.8373 0.1907 0.0568 0.0167 1.0385184: 0.2559 -3.1782 -0.8280 0.1828 0.0518 0.0144 1.0493185: 0.2477 -3.1751 -0.8276 0.1730 0.0448 0.0145 1.0272186: 0.2413 -3.1725 -0.8312 0.1847 0.0507 0.0129 1.0386187: 0.2537 -3.1861 -0.8200 0.1897 0.0464 0.0116 1.0416188: 0.2563 -3.1736 -0.8261 0.2258 0.0506 0.0126 1.0401189: 0.2633 -3.1752 -0.8162 0.1886 0.0459 0.0121 1.0519190: 0.2663 -3.1811 -0.8145 0.1648 0.0480 0.0120 1.0482191: 0.2574 -3.1709 -0.8175 0.1721 0.0504 0.0109 1.0555192: 0.2476 -3.1733 -0.8177 0.1668 0.0478 0.0110 1.0821193: 0.2955 -3.1664 -0.8109 0.1690 0.0495 0.0106 1.0521194: 0.2584 -3.1801 -0.8252 0.1841 0.0514 0.0093 1.0593195: 0.2602 -3.1882 -0.8294 0.1801 0.0461 0.0090 1.0397196: 0.2251 -3.1894 -0.8292 0.1883 0.0517 0.0099 1.0391197: 0.2500 -3.1824 -0.8078 0.2075 0.0413 0.0119 1.0704198: 0.3072 -3.1912 -0.8139 0.2399 0.0426 0.0120 1.0404199: 0.2987 -3.1901 -0.8029 0.2163 0.0474 0.0113 1.0580200: 0.2746 -3.1941 -0.8078 0.1906 0.0513 0.0134 1.0351201: 0.2662 -3.1916 -0.8064 0.1873 0.0508 0.0129 1.0285202: 0.2753 -3.1905 -0.8066 0.1922 0.0509 0.0124 1.0420203: 0.2852 -3.1905 -0.8076 0.2045 0.0520 0.0125 1.0432204: 0.2897 -3.1923 -0.8072 0.2080 0.0516 0.0121 1.0417205: 0.2898 -3.1882 -0.8068 0.2051 0.0526 0.0123 1.0395206: 0.2896 -3.1849 -0.8066 0.2053 0.0516 0.0123 1.0439207: 0.2879 -3.1863 -0.8066 0.2059 0.0502 0.0123 1.0453208: 0.2851 -3.1885 -0.8067 0.2032 0.0496 0.0125 1.0422209: 0.2873 -3.1890 -0.8076 0.2033 0.0492 0.0128 1.0399210: 0.2889 -3.1896 -0.8079 0.2043 0.0486 0.0128 1.0393211: 0.2905 -3.1893 -0.8072 0.2067 0.0487 0.0126 1.0364212: 0.2918 -3.1898 -0.8065 0.2084 0.0488 0.0127 1.0353213: 0.2934 -3.1905 -0.8059 0.2077 0.0486 0.0128 1.0356214: 0.2939 -3.1910 -0.8059 0.2084 0.0486 0.0133 1.0339215: 0.2934 -3.1908 -0.8055 0.2082 0.0483 0.0138 1.0337216: 0.2955 -3.1914 -0.8055 0.2102 0.0480 0.0140 1.0351217: 0.2964 -3.1901 -0.8056 0.2107 0.0479 0.0140 1.0337218: 0.2966 -3.1893 -0.8062 0.2103 0.0478 0.0141 1.0337219: 0.2972 -3.1886 -0.8070 0.2092 0.0474 0.0143 1.0330220: 0.2957 -3.1881 -0.8072 0.2068 0.0472 0.0145 1.0329221: 0.2943 -3.1881 -0.8073 0.2046 0.0470 0.0146 1.0323222: 0.2949 -3.1882 -0.8071 0.2046 0.0467 0.0148 1.0328223: 0.2954 -3.1886 -0.8070 0.2036 0.0465 0.0151 1.0327224: 0.2960 -3.1882 -0.8068 0.2039 0.0466 0.0152 1.0322225: 0.2961 -3.1896 -0.8060 0.2027 0.0466 0.0155 1.0336226: 0.2956 -3.1899 -0.8060 0.2032 0.0465 0.0156 1.0343227: 0.2947 -3.1903 -0.8057 0.2021 0.0464 0.0158 1.0345228: 0.2938 -3.1895 -0.8062 0.2016 0.0467 0.0160 1.0347229: 0.2934 -3.1896 -0.8062 0.2006 0.0467 0.0160 1.0348230: 0.2941 -3.1897 -0.8062 0.2001 0.0467 0.0160 1.0346231: 0.2942 -3.1897 -0.8058 0.1993 0.0467 0.0161 1.0344232: 0.2932 -3.1898 -0.8055 0.1988 0.0467 0.0161 1.0339233: 0.2932 -3.1905 -0.8049 0.1991 0.0465 0.0163 1.0340234: 0.2925 -3.1909 -0.8044 0.1987 0.0464 0.0163 1.0340235: 0.2927 -3.1909 -0.8045 0.1986 0.0464 0.0163 1.0340236: 0.2922 -3.1905 -0.8051 0.1984 0.0464 0.0163 1.0342237: 0.2925 -3.1906 -0.8052 0.1987 0.0464 0.0164 1.0342238: 0.2928 -3.1906 -0.8052 0.1990 0.0464 0.0165 1.0352239: 0.2928 -3.1904 -0.8052 0.1996 0.0465 0.0164 1.0359240: 0.2926 -3.1909 -0.8051 0.1998 0.0466 0.0164 1.0354241: 0.2932 -3.1916 -0.8046 0.2002 0.0467 0.0163 1.0348242: 0.2927 -3.1917 -0.8047 0.2004 0.0468 0.0163 1.0350243: 0.2917 -3.1914 -0.8048 0.2007 0.0470 0.0163 1.0350244: 0.2910 -3.1910 -0.8048 0.1998 0.0471 0.0163 1.0354245: 0.2911 -3.1911 -0.8048 0.1999 0.0472 0.0164 1.0364246: 0.2911 -3.1914 -0.8048 0.1998 0.0473 0.0164 1.0366247: 0.2910 -3.1913 -0.8046 0.2002 0.0473 0.0164 1.0367248: 0.2907 -3.1912 -0.8047 0.2003 0.0473 0.0164 1.0371249: 0.2902 -3.1913 -0.8046 0.1997 0.0472 0.0164 1.0372250: 0.2906 -3.1912 -0.8045 0.2002 0.0473 0.0164 1.0369251: 0.2905 -3.1910 -0.8043 0.2005 0.0474 0.0163 1.0370252: 0.2906 -3.1908 -0.8041 0.2010 0.0474 0.0163 1.0374253: 0.2899 -3.1907 -0.8043 0.2015 0.0475 0.0163 1.0374254: 0.2893 -3.1905 -0.8043 0.2020 0.0476 0.0163 1.0371255: 0.2890 -3.1903 -0.8041 0.2014 0.0476 0.0163 1.0374256: 0.2891 -3.1902 -0.8042 0.2017 0.0475 0.0163 1.0371257: 0.2888 -3.1902 -0.8044 0.2015 0.0475 0.0162 1.0373258: 0.2885 -3.1902 -0.8046 0.2019 0.0476 0.0161 1.0375259: 0.2878 -3.1902 -0.8048 0.2014 0.0477 0.0160 1.0377260: 0.2873 -3.1902 -0.8047 0.2011 0.0477 0.0160 1.0370261: 0.2875 -3.1903 -0.8044 0.2012 0.0478 0.0159 1.0368262: 0.2881 -3.1903 -0.8042 0.2015 0.0480 0.0158 1.0370263: 0.2884 -3.1903 -0.8042 0.2022 0.0480 0.0158 1.0368264: 0.2883 -3.1904 -0.8043 0.2026 0.0479 0.0158 1.0372265: 0.2885 -3.1902 -0.8043 0.2028 0.0481 0.0158 1.0375266: 0.2886 -3.1901 -0.8042 0.2037 0.0481 0.0158 1.0371267: 0.2890 -3.1901 -0.8042 0.2043 0.0480 0.0157 1.0372268: 0.2893 -3.1903 -0.8042 0.2045 0.0479 0.0158 1.0368269: 0.2899 -3.1904 -0.8040 0.2048 0.0479 0.0157 1.0369270: 0.2903 -3.1903 -0.8040 0.2055 0.0479 0.0157 1.0363271: 0.2904 -3.1902 -0.8041 0.2055 0.0480 0.0156 1.0364272: 0.2904 -3.1902 -0.8041 0.2053 0.0481 0.0156 1.0368273: 0.2906 -3.1901 -0.8040 0.2051 0.0482 0.0156 1.0369274: 0.2904 -3.1900 -0.8040 0.2043 0.0481 0.0156 1.0372275: 0.2903 -3.1898 -0.8041 0.2041 0.0482 0.0156 1.0371276: 0.2904 -3.1896 -0.8039 0.2042 0.0483 0.0156 1.0376277: 0.2902 -3.1896 -0.8037 0.2037 0.0482 0.0156 1.0378278: 0.2901 -3.1896 -0.8036 0.2034 0.0482 0.0156 1.0381279: 0.2900 -3.1897 -0.8037 0.2033 0.0481 0.0156 1.0382280: 0.2897 -3.1897 -0.8036 0.2030 0.0481 0.0155 1.0378281: 0.2893 -3.1897 -0.8036 0.2030 0.0481 0.0155 1.0376282: 0.2894 -3.1896 -0.8035 0.2034 0.0482 0.0154 1.0377283: 0.2901 -3.1896 -0.8034 0.2038 0.0483 0.0154 1.0384284: 0.2901 -3.1898 -0.8033 0.2042 0.0483 0.0153 1.0384285: 0.2901 -3.1899 -0.8034 0.2040 0.0483 0.0153 1.0383286: 0.2899 -3.1897 -0.8035 0.2043 0.0485 0.0153 1.0383287: 0.2899 -3.1895 -0.8036 0.2045 0.0485 0.0153 1.0384288: 0.2899 -3.1895 -0.8037 0.2043 0.0486 0.0152 1.0386289: 0.2901 -3.1895 -0.8037 0.2040 0.0486 0.0152 1.0388290: 0.2902 -3.1894 -0.8037 0.2040 0.0486 0.0153 1.0390291: 0.2906 -3.1893 -0.8036 0.2038 0.0486 0.0153 1.0385292: 0.2905 -3.1893 -0.8036 0.2036 0.0486 0.0152 1.0382293: 0.2901 -3.1893 -0.8037 0.2038 0.0485 0.0152 1.0381294: 0.2897 -3.1895 -0.8039 0.2041 0.0485 0.0152 1.0378295: 0.2898 -3.1896 -0.8039 0.2044 0.0485 0.0151 1.0376296: 0.2898 -3.1895 -0.8040 0.2043 0.0485 0.0151 1.0378297: 0.2899 -3.1893 -0.8041 0.2043 0.0484 0.0152 1.0377298: 0.2900 -3.1895 -0.8041 0.2040 0.0485 0.0152 1.0375299: 0.2898 -3.1894 -0.8042 0.2043 0.0485 0.0151 1.0376300: 0.2897 -3.1895 -0.8043 0.2047 0.0485 0.0151 1.0377301: 0.2897 -3.1895 -0.8043 0.2046 0.0485 0.0150 1.0377302: 0.2895 -3.1895 -0.8044 0.2045 0.0485 0.0150 1.0376303: 0.2893 -3.1895 -0.8045 0.2046 0.0484 0.0151 1.0372304: 0.2893 -3.1894 -0.8046 0.2048 0.0483 0.0151 1.0373305: 0.2892 -3.1895 -0.8046 0.2049 0.0483 0.0151 1.0373306: 0.2890 -3.1897 -0.8047 0.2048 0.0483 0.0151 1.0373307: 0.2891 -3.1897 -0.8048 0.2047 0.0484 0.0150 1.0376308: 0.2889 -3.1899 -0.8049 0.2047 0.0484 0.0150 1.0379309: 0.2886 -3.1901 -0.8050 0.2047 0.0483 0.0150 1.0379310: 0.2885 -3.1900 -0.8052 0.2048 0.0484 0.0150 1.0378311: 0.2885 -3.1900 -0.8052 0.2049 0.0485 0.0150 1.0378312: 0.2883 -3.1900 -0.8053 0.2052 0.0485 0.0150 1.0377313: 0.2882 -3.1901 -0.8054 0.2050 0.0485 0.0149 1.0378314: 0.2881 -3.1903 -0.8053 0.2051 0.0484 0.0150 1.0378315: 0.2881 -3.1903 -0.8053 0.2053 0.0483 0.0150 1.0379316: 0.2882 -3.1904 -0.8053 0.2055 0.0483 0.0150 1.0379317: 0.2884 -3.1903 -0.8053 0.2054 0.0482 0.0150 1.0380318: 0.2885 -3.1904 -0.8053 0.2054 0.0482 0.0150 1.0379319: 0.2884 -3.1904 -0.8053 0.2051 0.0482 0.0150 1.0380320: 0.2881 -3.1903 -0.8054 0.2052 0.0482 0.0150 1.0383321: 0.2878 -3.1903 -0.8056 0.2053 0.0482 0.0150 1.0383322: 0.2877 -3.1903 -0.8058 0.2056 0.0481 0.0151 1.0383323: 0.2872 -3.1903 -0.8059 0.2060 0.0482 0.0151 1.0383324: 0.2874 -3.1902 -0.8058 0.2064 0.0482 0.0151 1.0381325: 0.2873 -3.1901 -0.8059 0.2066 0.0482 0.0151 1.0379326: 0.2873 -3.1901 -0.8061 0.2066 0.0481 0.0151 1.0378327: 0.2874 -3.1901 -0.8061 0.2069 0.0481 0.0151 1.0376328: 0.2874 -3.1901 -0.8061 0.2072 0.0481 0.0151 1.0374329: 0.2875 -3.1902 -0.8059 0.2074 0.0481 0.0151 1.0375330: 0.2873 -3.1902 -0.8059 0.2075 0.0481 0.0151 1.0376331: 0.2873 -3.1901 -0.8059 0.2074 0.0481 0.0151 1.0374332: 0.2871 -3.1900 -0.8059 0.2075 0.0481 0.0151 1.0377333: 0.2869 -3.1898 -0.8061 0.2080 0.0481 0.0151 1.0379334: 0.2866 -3.1898 -0.8064 0.2082 0.0480 0.0151 1.0380335: 0.2865 -3.1898 -0.8066 0.2086 0.0480 0.0151 1.0378336: 0.2862 -3.1897 -0.8067 0.2087 0.0481 0.0151 1.0378337: 0.2859 -3.1894 -0.8069 0.2088 0.0482 0.0151 1.0378338: 0.2859 -3.1893 -0.8069 0.2088 0.0482 0.0150 1.0376339: 0.2856 -3.1893 -0.8070 0.2086 0.0483 0.0150 1.0376340: 0.2854 -3.1893 -0.8070 0.2086 0.0483 0.0150 1.0374341: 0.2855 -3.1894 -0.8070 0.2085 0.0483 0.0150 1.0374342: 0.2853 -3.1895 -0.8070 0.2083 0.0483 0.0150 1.0373343: 0.2851 -3.1895 -0.8070 0.2081 0.0483 0.0149 1.0371344: 0.2851 -3.1895 -0.8070 0.2080 0.0482 0.0149 1.0371345: 0.2851 -3.1895 -0.8069 0.2079 0.0482 0.0149 1.0369346: 0.2852 -3.1896 -0.8070 0.2077 0.0482 0.0149 1.0370347: 0.2853 -3.1896 -0.8071 0.2077 0.0482 0.0149 1.0373348: 0.2850 -3.1895 -0.8072 0.2076 0.0481 0.0149 1.0373349: 0.2849 -3.1897 -0.8072 0.2074 0.0481 0.0150 1.0373350: 0.2846 -3.1898 -0.8073 0.2073 0.0481 0.0150 1.0373351: 0.2844 -3.1898 -0.8074 0.2073 0.0481 0.0150 1.0372352: 0.2839 -3.1896 -0.8074 0.2073 0.0481 0.0150 1.0374353: 0.2839 -3.1895 -0.8075 0.2076 0.0481 0.0150 1.0374354: 0.2839 -3.1895 -0.8076 0.2077 0.0481 0.0150 1.0373355: 0.2839 -3.1896 -0.8077 0.2076 0.0481 0.0150 1.0373356: 0.2837 -3.1896 -0.8077 0.2075 0.0481 0.0150 1.0374357: 0.2838 -3.1895 -0.8078 0.2074 0.0481 0.0150 1.0375358: 0.2837 -3.1895 -0.8077 0.2071 0.0481 0.0150 1.0374359: 0.2837 -3.1894 -0.8077 0.2070 0.0481 0.0150 1.0374360: 0.2835 -3.1894 -0.8078 0.2069 0.0480 0.0150 1.0373361: 0.2832 -3.1893 -0.8080 0.2068 0.0480 0.0151 1.0372362: 0.2833 -3.1894 -0.8080 0.2066 0.0481 0.0151 1.0371363: 0.2832 -3.1894 -0.8081 0.2066 0.0480 0.0151 1.0368364: 0.2832 -3.1894 -0.8081 0.2067 0.0480 0.0151 1.0369365: 0.2831 -3.1895 -0.8081 0.2066 0.0480 0.0151 1.0368366: 0.2832 -3.1894 -0.8082 0.2066 0.0480 0.0151 1.0369367: 0.2833 -3.1894 -0.8082 0.2064 0.0480 0.0151 1.0370368: 0.2834 -3.1893 -0.8082 0.2064 0.0480 0.0151 1.0370369: 0.2833 -3.1892 -0.8083 0.2068 0.0480 0.0151 1.0370370: 0.2833 -3.1891 -0.8083 0.2068 0.0480 0.0151 1.0370371: 0.2828 -3.1891 -0.8085 0.2067 0.0480 0.0151 1.0370372: 0.2825 -3.1891 -0.8087 0.2065 0.0480 0.0151 1.0371373: 0.2823 -3.1890 -0.8088 0.2064 0.0480 0.0151 1.0373374: 0.2822 -3.1889 -0.8089 0.2060 0.0480 0.0151 1.0374375: 0.2818 -3.1889 -0.8090 0.2059 0.0480 0.0151 1.0376376: 0.2816 -3.1888 -0.8091 0.2058 0.0480 0.0151 1.0375377: 0.2814 -3.1887 -0.8091 0.2055 0.0481 0.0151 1.0375378: 0.2810 -3.1888 -0.8092 0.2054 0.0481 0.0151 1.0375379: 0.2808 -3.1889 -0.8092 0.2055 0.0481 0.0151 1.0376380: 0.2806 -3.1890 -0.8093 0.2054 0.0481 0.0150 1.0375381: 0.2803 -3.1890 -0.8094 0.2053 0.0480 0.0150 1.0374382: 0.2801 -3.1890 -0.8095 0.2052 0.0480 0.0150 1.0374383: 0.2803 -3.1890 -0.8094 0.2052 0.0480 0.0150 1.0373384: 0.2802 -3.1890 -0.8095 0.2050 0.0480 0.0150 1.0372385: 0.2801 -3.1890 -0.8095 0.2051 0.0480 0.0150 1.0372386: 0.2802 -3.1889 -0.8095 0.2050 0.0480 0.0150 1.0372387: 0.2803 -3.1889 -0.8094 0.2049 0.0479 0.0150 1.0371388: 0.2804 -3.1889 -0.8093 0.2049 0.0479 0.0150 1.0371389: 0.2804 -3.1889 -0.8093 0.2049 0.0480 0.0150 1.0372390: 0.2803 -3.1888 -0.8094 0.2049 0.0480 0.0150 1.0370391: 0.2804 -3.1888 -0.8094 0.2050 0.0480 0.0150 1.0370392: 0.2805 -3.1888 -0.8094 0.2051 0.0480 0.0150 1.0370393: 0.2804 -3.1889 -0.8095 0.2052 0.0479 0.0150 1.0369394: 0.2803 -3.1889 -0.8095 0.2053 0.0479 0.0150 1.0369395: 0.2805 -3.1888 -0.8095 0.2052 0.0479 0.0151 1.0370396: 0.2807 -3.1888 -0.8094 0.2052 0.0479 0.0151 1.0369397: 0.2809 -3.1889 -0.8093 0.2053 0.0479 0.0151 1.0369398: 0.2809 -3.1889 -0.8092 0.2053 0.0479 0.0151 1.0368399: 0.2811 -3.1889 -0.8091 0.2054 0.0479 0.0151 1.0367400: 0.2813 -3.1889 -0.8091 0.2054 0.0479 0.0151 1.0369401: 0.2814 -3.1887 -0.8091 0.2054 0.0479 0.0151 1.0369402: 0.2816 -3.1887 -0.8090 0.2055 0.0479 0.0151 1.0370403: 0.2819 -3.1887 -0.8091 0.2054 0.0480 0.0151 1.0371404: 0.2822 -3.1886 -0.8091 0.2053 0.0480 0.0151 1.0371405: 0.2822 -3.1886 -0.8091 0.2053 0.0480 0.0151 1.0371406: 0.2823 -3.1885 -0.8091 0.2054 0.0480 0.0151 1.0372407: 0.2824 -3.1885 -0.8090 0.2056 0.0480 0.0151 1.0371408: 0.2824 -3.1884 -0.8090 0.2055 0.0480 0.0151 1.0373409: 0.2824 -3.1884 -0.8091 0.2055 0.0480 0.0151 1.0372410: 0.2823 -3.1884 -0.8092 0.2055 0.0480 0.0151 1.0373411: 0.2824 -3.1884 -0.8092 0.2057 0.0481 0.0151 1.0374412: 0.2823 -3.1883 -0.8093 0.2055 0.0481 0.0151 1.0376413: 0.2821 -3.1883 -0.8094 0.2054 0.0481 0.0151 1.0377414: 0.2817 -3.1883 -0.8095 0.2053 0.0481 0.0152 1.0377415: 0.2817 -3.1883 -0.8095 0.2053 0.0481 0.0152 1.0377416: 0.2818 -3.1883 -0.8096 0.2053 0.0481 0.0152 1.0376417: 0.2818 -3.1883 -0.8096 0.2052 0.0481 0.0152 1.0375418: 0.2817 -3.1883 -0.8096 0.2050 0.0481 0.0152 1.0375419: 0.2816 -3.1882 -0.8096 0.2050 0.0481 0.0152 1.0374420: 0.2816 -3.1882 -0.8095 0.2051 0.0481 0.0152 1.0373421: 0.2816 -3.1882 -0.8095 0.2051 0.0481 0.0152 1.0373422: 0.2818 -3.1883 -0.8094 0.2054 0.0481 0.0152 1.0373423: 0.2819 -3.1882 -0.8094 0.2055 0.0481 0.0152 1.0373424: 0.2819 -3.1882 -0.8095 0.2055 0.0482 0.0151 1.0373425: 0.2820 -3.1882 -0.8095 0.2055 0.0482 0.0151 1.0373426: 0.2821 -3.1881 -0.8095 0.2055 0.0482 0.0151 1.0373427: 0.2820 -3.1880 -0.8096 0.2055 0.0483 0.0151 1.0371428: 0.2818 -3.1880 -0.8096 0.2056 0.0483 0.0151 1.0371429: 0.2818 -3.1880 -0.8096 0.2056 0.0482 0.0151 1.0371430: 0.2816 -3.1880 -0.8096 0.2055 0.0483 0.0151 1.0370431: 0.2814 -3.1880 -0.8097 0.2054 0.0483 0.0152 1.0369432: 0.2812 -3.1880 -0.8097 0.2054 0.0483 0.0152 1.0368433: 0.2812 -3.1880 -0.8096 0.2054 0.0482 0.0152 1.0368434: 0.2811 -3.1882 -0.8096 0.2054 0.0483 0.0152 1.0367435: 0.2811 -3.1881 -0.8096 0.2053 0.0483 0.0152 1.0367436: 0.2811 -3.1882 -0.8095 0.2052 0.0483 0.0152 1.0368437: 0.2810 -3.1882 -0.8096 0.2052 0.0483 0.0152 1.0368438: 0.2808 -3.1881 -0.8097 0.2053 0.0483 0.0152 1.0368439: 0.2807 -3.1880 -0.8097 0.2053 0.0483 0.0152 1.0368440: 0.2806 -3.1880 -0.8097 0.2052 0.0483 0.0152 1.0368441: 0.2807 -3.1881 -0.8097 0.2051 0.0483 0.0152 1.0368442: 0.2806 -3.1881 -0.8096 0.2051 0.0483 0.0152 1.0368443: 0.2807 -3.1880 -0.8097 0.2052 0.0483 0.0151 1.0369444: 0.2807 -3.1879 -0.8098 0.2052 0.0483 0.0151 1.0369445: 0.2807 -3.1879 -0.8098 0.2055 0.0483 0.0151 1.0370446: 0.2806 -3.1879 -0.8098 0.2057 0.0483 0.0151 1.0370447: 0.2807 -3.1879 -0.8099 0.2057 0.0483 0.0150 1.0370448: 0.2808 -3.1879 -0.8098 0.2057 0.0483 0.0150 1.0369449: 0.2808 -3.1879 -0.8097 0.2056 0.0483 0.0151 1.0368450: 0.2808 -3.1880 -0.8096 0.2056 0.0483 0.0151 1.0368451: 0.2809 -3.1880 -0.8096 0.2057 0.0482 0.0151 1.0368452: 0.2808 -3.1880 -0.8097 0.2058 0.0482 0.0151 1.0368453: 0.2808 -3.1880 -0.8097 0.2057 0.0482 0.0151 1.0367454: 0.2808 -3.1880 -0.8097 0.2056 0.0482 0.0151 1.0366455: 0.2808 -3.1880 -0.8098 0.2057 0.0482 0.0151 1.0366456: 0.2807 -3.1880 -0.8098 0.2059 0.0482 0.0151 1.0365457: 0.2807 -3.1880 -0.8098 0.2060 0.0482 0.0151 1.0364458: 0.2807 -3.1879 -0.8098 0.2060 0.0482 0.0151 1.0363459: 0.2807 -3.1878 -0.8098 0.2058 0.0481 0.0151 1.0363460: 0.2808 -3.1878 -0.8098 0.2058 0.0481 0.0151 1.0362461: 0.2807 -3.1878 -0.8098 0.2058 0.0481 0.0151 1.0362462: 0.2807 -3.1878 -0.8097 0.2057 0.0481 0.0151 1.0362463: 0.2807 -3.1878 -0.8097 0.2056 0.0480 0.0151 1.0363464: 0.2807 -3.1877 -0.8097 0.2056 0.0481 0.0151 1.0362465: 0.2808 -3.1878 -0.8097 0.2055 0.0480 0.0151 1.0363466: 0.2809 -3.1878 -0.8097 0.2055 0.0480 0.0151 1.0363467: 0.2809 -3.1878 -0.8097 0.2054 0.0480 0.0151 1.0362468: 0.2810 -3.1878 -0.8096 0.2055 0.0480 0.0151 1.0361469: 0.2811 -3.1877 -0.8096 0.2056 0.0480 0.0151 1.0361470: 0.2811 -3.1877 -0.8096 0.2056 0.0480 0.0151 1.0361471: 0.2809 -3.1877 -0.8097 0.2055 0.0480 0.0151 1.0361472: 0.2807 -3.1877 -0.8097 0.2055 0.0480 0.0151 1.0360473: 0.2806 -3.1878 -0.8097 0.2054 0.0480 0.0151 1.0360474: 0.2805 -3.1878 -0.8097 0.2052 0.0480 0.0151 1.0360475: 0.2805 -3.1877 -0.8097 0.2051 0.0479 0.0151 1.0360476: 0.2805 -3.1877 -0.8098 0.2052 0.0479 0.0151 1.0360477: 0.2805 -3.1877 -0.8098 0.2051 0.0479 0.0151 1.0359478: 0.2804 -3.1877 -0.8098 0.2051 0.0479 0.0151 1.0359479: 0.2805 -3.1876 -0.8098 0.2052 0.0480 0.0151 1.0359480: 0.2805 -3.1876 -0.8098 0.2051 0.0480 0.0151 1.0360481: 0.2805 -3.1877 -0.8097 0.2051 0.0480 0.0151 1.0360482: 0.2805 -3.1877 -0.8098 0.2051 0.0480 0.0151 1.0360483: 0.2805 -3.1877 -0.8098 0.2052 0.0480 0.0151 1.0360484: 0.2804 -3.1877 -0.8098 0.2053 0.0480 0.0151 1.0359485: 0.2805 -3.1877 -0.8098 0.2055 0.0479 0.0151 1.0360486: 0.2805 -3.1876 -0.8098 0.2055 0.0479 0.0151 1.0360487: 0.2806 -3.1876 -0.8098 0.2055 0.0479 0.0151 1.0359488: 0.2806 -3.1876 -0.8098 0.2055 0.0479 0.0151 1.0357489: 0.2807 -3.1876 -0.8098 0.2055 0.0479 0.0151 1.0356490: 0.2808 -3.1877 -0.8097 0.2055 0.0479 0.0151 1.0356491: 0.2809 -3.1877 -0.8097 0.2055 0.0479 0.0151 1.0355492: 0.2810 -3.1877 -0.8096 0.2054 0.0479 0.0151 1.0355493: 0.2810 -3.1877 -0.8096 0.2054 0.0479 0.0151 1.0355494: 0.2811 -3.1877 -0.8096 0.2053 0.0478 0.0151 1.0354495: 0.2813 -3.1877 -0.8095 0.2053 0.0478 0.0151 1.0353496: 0.2815 -3.1876 -0.8095 0.2052 0.0478 0.0151 1.0353497: 0.2815 -3.1876 -0.8095 0.2052 0.0479 0.0151 1.0353498: 0.2816 -3.1876 -0.8096 0.2052 0.0479 0.0151 1.0353499: 0.2816 -3.1875 -0.8096 0.2052 0.0479 0.0151 1.0352500: 0.2816 -3.1875 -0.8097 0.2052 0.0479 0.0150 1.0352## Calculate ETA-based prediction and error derivatives:Calculate Jacobian...................done.Calculate sensitivities.......done.## Calculate d(f)/d(eta) ## ...## done## ...## doneThe model-based sensitivities have been calculated.Calculating Table Variables...done
fit-- nlmixr SAEM fit (ODE); OBJF calculated from FOCEi approximation ------------- OBJF AIC BIC Log-likelihood Condition Number 349.6105 363.6105 388.6422 -174.8053 176.3777 -- Time (sec; fit$time): ------------------------------------------------------- saem setup Likelihood Calculation covariance tableelapsed 123.53 23.29 0.1 0 0.21 -- Parameters (fit$par.fixed): ------------------------------------------------- Parameter Estimate SE %RSE Back-transformed(95%CI) BSV(CV%)tka Log Ka 0.282 0.137 48.6 1.33 (1.01, 1.73) 47.7%tcl Log Cl -3.19 0.0654 2.05 0.0413 (0.0363, 0.0469) 22.2%tv Log V -0.810 0.0402 4.97 0.445 (0.411, 0.482) 12.3%add.err add.err 1.02 1.02 Shrink(SD)%tka 1.15% tcl 0.881% tv 13.5% add.err 5.59%
No correlations in between subject variability (BSV) matrix Full BSV covariance (fit$omega) or correlation (fit$omega.R; diagonals=SDs) Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink -- Fit Data (object fit is a modified data.frame): -----------------------------# A tibble: 264 x 21 ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES CWRES*
1 1 0 0.74 0 0.74 0.727 0 0.74 0.727 0 0.74 0.7272 1 0.25 2.84 2.52 0.323 0.226 3.50 -0.660 -0.649 2.35 0.486 0.2853 1 0.570 6.57 4.65 1.92 1.06 6.32 0.254 0.250 4.41 2.16 0.989# ... with 261 more rows, and 9 more variables: eta.ka , eta.cl ,# eta.v , depot , center , ka , cl , v ,# cp > Also note that the theopyhille dataset has a different dose specification than a usual PK dataset (Issue #36 https://github.com/nlmixrdevelopment/nlmixr/issues/36). You can either change the dataset or the model (a model change is below)
theo.mod2 <- function() {+ ini({+ tka <- .5 # Log Ka+ tcl <- -3.2 # Log Cl+ tv <- -1 # Log V+ eta.ka ~ 1+ eta.cl ~ 2+ eta.v ~ 1+ add.err <- 0.1+ })+ model({+ ka <- exp(tka + eta.ka)+ cl <- exp(tcl + eta.cl)+ v <- exp(tv + eta.v)+ d/dt(depot) = -ka depot+ d/dt(center) = ka depot - cl / v center+ cp = (center / v) wt+ cp ~ add(add.err)+ })+ }> fit <- nlmixr(theo.mod2,theo_md, est="saem")
Compiling RxODE differential equations...done.PKG_CXXFLAGS=-Ic:/R/nlmixr/R/library/nlmixr/include -Ic:/R/nlmixr/R/library/STANHE~1/include -Ic:/R/nlmixr/R/library/Rcpp/include -Ic:/R/nlmixr/R/library/RCPPAR~1/include -Ic:/R/nlmixr/R/library/RCPPEI~1/include -Ic:/R/nlmixr/R/library/BH/includePKG_LIBS= $(BLAS_LIBS) $(LAPACK_LIBS)c:/R/nlmixr/rtools/mingw_64/bin/g++ -I"c:/R/nlmixr/R/include" -DNDEBUG -Ic:/R/nlmixr/R/library/nlmixr/include -Ic:/R/nlmixr/R/library/STANHE~1/include -Ic:/R/nlmixr/R/library/Rcpp/include -Ic:/R/nlmixr/R/library/RCPPAR~1/include -Ic:/R/nlmixr/R/library/RCPPEI~1/include -Ic:/R/nlmixr/R/library/BH/include -O2 -Wall -mtune=generic -c saem1664c353f4abfx64.cpp -o saem1664c353f4abfx64.oc:/R/nlmixr/rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o saem1664c353f4abfx64.dll tmp.def saem1664c353f4abfx64.o -Lc:/R/nlmixr/R/bin/x64 -lRblas -Lc:/R/nlmixr/R/bin/x64 -lRlapack -Lc:/R/nlmixr/R/bin/x64 -lRdone.1: -1.7977 1.4233 -0.1387 1.3452 1.9000 1.4159 13.20842: -2.2817 1.3197 0.2501 1.2779 1.8050 1.3451 6.44933: -2.3148 1.2611 0.4194 1.2140 1.7147 1.2778 4.29864: -2.3550 1.1285 0.6010 1.1533 1.6290 1.2139 2.58935: -2.3248 1.0990 0.6004 1.0956 1.5476 1.1532 2.29086: -2.3291 1.1026 0.6744 1.0409 1.4702 1.0956 1.96887: -2.3756 1.0764 0.6518 0.9888 1.3967 1.0408 1.75308: -2.4391 1.0224 0.6822 0.9394 1.3268 0.9887 1.43399: -2.4114 1.0209 0.6896 0.8924 1.2605 0.9393 1.334310: -2.3754 1.0516 0.7340 0.8478 1.1975 0.8923 1.306211: -2.3471 1.0531 0.8311 0.8054 1.1376 0.8477 1.186512: -2.3485 1.0611 0.8142 0.7651 1.0807 0.8053 1.192313: -2.3463 1.0636 0.7774 0.7269 1.0267 0.7651 1.208114: -2.3168 1.0735 0.8358 0.6905 0.9753 0.7268 1.155715: -2.3361 1.0723 0.7969 0.6560 0.9266 0.6905 1.096616: -2.3307 1.0764 0.7972 0.6232 0.8803 0.6560 1.107817: -2.3507 1.0746 0.7832 0.5920 0.8362 0.6232 1.082618: -2.3444 1.0735 0.7930 0.5624 0.7944 0.5920 1.085719: -2.3470 1.0781 0.7889 0.5343 0.7547 0.5624 1.072120: -2.3425 1.0586 0.7958 0.5076 0.7170 0.5343 1.056521: -2.3423 1.0564 0.8241 0.4822 0.6811 0.5076 1.063822: -2.3620 1.0495 0.8127 0.4581 0.6471 0.4822 1.037523: -2.3451 1.0557 0.7758 0.4352 0.6147 0.4581 1.059724: -2.3525 1.0586 0.7655 0.4134 0.5840 0.4352 1.027625: -2.3453 1.0593 0.7786 0.3928 0.5548 0.4134 1.041926: -2.3436 1.0639 0.7779 0.3731 0.5270 0.3927 1.030427: -2.3654 1.0556 0.7589 0.3545 0.5007 0.3731 1.033328: -2.3866 1.0541 0.7364 0.3368 0.4757 0.3545 1.044629: -2.4054 1.0588 0.7041 0.3199 0.4519 0.3367 1.054230: -2.3965 1.0514 0.7243 0.3039 0.4293 0.3199 1.073831: -2.4197 1.0438 0.7216 0.2887 0.4078 0.3039 1.068432: -2.4165 1.0290 0.7334 0.2743 0.3874 0.2887 1.062133: -2.4166 1.0415 0.6976 0.2606 0.3681 0.2743 1.060934: -2.3981 1.0426 0.7126 0.2475 0.3496 0.2606 1.066135: -2.4137 1.0391 0.7062 0.2352 0.3322 0.2475 1.065536: -2.4044 1.0272 0.7079 0.2234 0.3156 0.2361 1.064337: -2.4105 1.0408 0.7294 0.2122 0.2998 0.2281 1.061238: -2.3889 1.0496 0.7202 0.2016 0.2848 0.2327 1.041639: -2.3832 1.0581 0.7379 0.1915 0.2706 0.2210 1.046940: -2.3794 1.0600 0.7518 0.1820 0.2570 0.2100 1.041341: -2.3838 1.0596 0.7571 0.1729 0.2442 0.1995 1.024442: -2.3713 1.0453 0.7563 0.1642 0.2320 0.1895 1.035743: -2.3745 1.0450 0.7373 0.1560 0.2204 0.1800 1.043044: -2.3990 1.0536 0.7140 0.1482 0.2093 0.1710 1.047445: -2.3934 1.0488 0.7028 0.1408 0.1989 0.1865 1.041146: -2.3936 1.0450 0.7219 0.1338 0.1889 0.1856 1.043247: -2.4088 1.0363 0.6819 0.1271 0.1795 0.2068 1.072748: -2.4073 1.0403 0.7106 0.1207 0.1705 0.1964 1.061249: -2.4116 1.0350 0.7190 0.1147 0.1620 0.1866 1.079450: -2.4108 1.0300 0.7200 0.1090 0.1539 0.1773 1.066151: -2.3926 1.0484 0.6926 0.1035 0.1462 0.1684 1.050852: -2.3817 1.0459 0.7297 0.0983 0.1389 0.1600 1.037653: -2.3751 1.0544 0.7575 0.0934 0.1319 0.1520 1.042954: -2.4026 1.0439 0.7456 0.0887 0.1253 0.1444 1.043355: -2.4146 1.0330 0.7404 0.0843 0.1191 0.1372 1.065656: -2.4012 1.0267 0.7417 0.0801 0.1131 0.1340 1.061257: -2.4092 1.0411 0.7463 0.0761 0.1075 0.1273 1.047158: -2.4040 1.0359 0.7204 0.0723 0.1021 0.1392 1.035959: -2.4048 1.0367 0.7377 0.0687 0.0970 0.1323 1.041460: -2.3998 1.0355 0.7608 0.0652 0.0921 0.1256 1.048461: -2.3835 1.0463 0.7761 0.0620 0.0875 0.1194 1.054562: -2.3739 1.0476 0.7848 0.0589 0.0832 0.1232 1.050163: -2.3716 1.0405 0.7717 0.0559 0.0790 0.1277 1.049764: -2.3648 1.0584 0.7662 0.0531 0.0750 0.1213 1.041765: -2.3539 1.0522 0.7683 0.0505 0.0713 0.1152 1.067166: -2.3984 1.0449 0.7667 0.0480 0.0677 0.1095 1.037267: -2.4077 1.0177 0.7484 0.0456 0.0643 0.1204 1.050368: -2.4189 1.0294 0.7575 0.0433 0.0611 0.1144 1.067269: -2.4134 1.0332 0.7252 0.0411 0.0581 0.1521 1.056370: -2.4173 1.0357 0.7165 0.0391 0.0552 0.1537 1.039171: -2.4242 1.0371 0.6887 0.0371 0.0524 0.1507 1.038572: -2.4412 1.0195 0.6808 0.0352 0.0498 0.1563 1.044873: -2.4254 1.0336 0.7386 0.0335 0.0473 0.1711 1.033574: -2.4279 1.0293 0.7195 0.0318 0.0449 0.1626 1.016175: -2.4205 1.0242 0.7765 0.0302 0.0427 0.1544 1.032176: -2.4030 1.0344 0.7867 0.0287 0.0406 0.1716 1.066577: -2.3913 1.0316 0.7569 0.0273 0.0385 0.1754 1.015178: -2.3946 1.0378 0.7464 0.0259 0.0422 0.1666 1.020779: -2.3983 1.0453 0.7407 0.0246 0.0431 0.1583 1.041680: -2.3911 1.0582 0.7447 0.0234 0.0476 0.1836 1.052181: -2.3875 1.0447 0.7367 0.0222 0.0452 0.1744 1.010282: -2.3722 1.0362 0.7672 0.0211 0.0429 0.1657 1.017383: -2.3892 1.0381 0.7524 0.0200 0.0443 0.1574 1.042084: -2.4174 1.0246 0.7031 0.0190 0.0421 0.1672 1.015585: -2.4340 1.0206 0.7161 0.0181 0.0399 0.1702 1.045486: -2.4257 1.0307 0.6851 0.0172 0.0380 0.1734 1.017587: -2.4285 1.0250 0.6788 0.0163 0.0376 0.1648 1.030588: -2.4337 1.0170 0.7209 0.0155 0.0358 0.1565 1.040389: -2.4350 1.0260 0.6938 0.0147 0.0340 0.1487 1.045090: -2.4309 1.0207 0.7002 0.0140 0.0355 0.1413 1.041991: -2.4434 1.0123 0.6764 0.0133 0.0357 0.1391 1.032392: -2.4437 1.0249 0.6884 0.0126 0.0445 0.1577 1.030493: -2.4590 1.0123 0.6792 0.0120 0.0423 0.1670 1.024894: -2.4437 1.0303 0.6606 0.0114 0.0437 0.1586 1.050295: -2.4264 1.0289 0.7145 0.0108 0.0430 0.1507 1.027896: -2.4173 1.0275 0.7264 0.0103 0.0409 0.1432 1.026397: -2.4084 1.0338 0.7123 0.0098 0.0388 0.1360 1.033598: -2.4190 1.0386 0.7435 0.0093 0.0395 0.1441 1.038199: -2.4216 1.0194 0.6931 0.0088 0.0375 0.1671 1.0210100: -2.4308 1.0208 0.7311 0.0084 0.0357 0.1588 1.0312101: -2.4427 1.0032 0.6918 0.0080 0.0339 0.1508 1.0373102: -2.4617 1.0011 0.6699 0.0076 0.0322 0.1545 1.0685103: -2.4469 1.0082 0.7087 0.0072 0.0314 0.1645 1.0632104: -2.4276 1.0173 0.7390 0.0068 0.0317 0.1766 1.0551105: -2.4252 1.0230 0.7171 0.0077 0.0328 0.1678 1.0456106: -2.4162 1.0252 0.7093 0.0080 0.0373 0.1594 1.0295107: -2.3911 1.0446 0.7528 0.0099 0.0355 0.1674 1.0634108: -2.3938 1.0331 0.7495 0.0094 0.0356 0.1620 1.0375109: -2.3988 1.0387 0.7636 0.0089 0.0377 0.1718 1.0404110: -2.4060 1.0306 0.7270 0.0089 0.0375 0.1632 1.0121111: -2.4125 1.0393 0.7181 0.0084 0.0389 0.1550 1.0263112: -2.4228 1.0249 0.6734 0.0095 0.0417 0.1499 1.0244113: -2.4147 1.0446 0.7272 0.0090 0.0396 0.1455 1.0108114: -2.3971 1.0380 0.7377 0.0085 0.0419 0.1382 1.0469115: -2.3895 1.0321 0.7166 0.0089 0.0401 0.1571 1.0553116: -2.4044 1.0375 0.7305 0.0085 0.0381 0.1783 1.0413117: -2.4140 1.0388 0.7499 0.0081 0.0362 0.1694 1.0546118: -2.4126 1.0184 0.7322 0.0077 0.0396 0.1609 1.0295119: -2.4191 1.0222 0.7369 0.0073 0.0376 0.1978 1.0222120: -2.4241 1.0222 0.7297 0.0070 0.0368 0.1879 1.0216121: -2.4305 1.0274 0.7071 0.0066 0.0349 0.1809 1.0497122: -2.4211 1.0188 0.7251 0.0068 0.0355 0.1747 1.0343123: -2.4097 1.0321 0.7142 0.0064 0.0382 0.1791 1.0235124: -2.4032 1.0432 0.7258 0.0061 0.0370 0.1903 1.0386125: -2.3936 1.0452 0.7153 0.0058 0.0351 0.1808 1.0449126: -2.4105 1.0382 0.6908 0.0055 0.0334 0.1749 1.0373127: -2.4092 1.0333 0.6748 0.0052 0.0333 0.1834 1.0407128: -2.4116 1.0356 0.7135 0.0050 0.0317 0.1742 1.0629129: -2.4084 1.0385 0.7157 0.0047 0.0390 0.1655 1.0542130: -2.3920 1.0380 0.7317 0.0045 0.0371 0.1572 1.0198131: -2.4034 1.0289 0.7102 0.0043 0.0353 0.1493 1.0494132: -2.4153 1.0342 0.6777 0.0041 0.0335 0.1449 1.0546133: -2.4175 1.0220 0.6869 0.0039 0.0319 0.1666 1.0600134: -2.4177 1.0173 0.7401 0.0037 0.0363 0.1583 1.0415135: -2.4256 1.0231 0.7301 0.0036 0.0367 0.1641 1.0420136: -2.4283 1.0292 0.7071 0.0034 0.0348 0.1871 1.0312137: -2.4207 1.0236 0.7029 0.0038 0.0331 0.1777 1.0428138: -2.4122 1.0291 0.6963 0.0038 0.0347 0.1877 1.0238139: -2.4114 1.0382 0.7356 0.0045 0.0349 0.1879 1.0157140: -2.4058 1.0331 0.7272 0.0044 0.0349 0.1785 1.0364141: -2.4107 1.0225 0.7407 0.0042 0.0383 0.1696 1.0264142: -2.4144 1.0179 0.7384 0.0044 0.0364 0.1611 1.0151143: -2.4130 1.0339 0.7221 0.0042 0.0346 0.1530 1.0386144: -2.4020 1.0352 0.7330 0.0039 0.0363 0.1588 1.0264145: -2.4039 1.0404 0.7026 0.0042 0.0366 0.1508 1.0298146: -2.4074 1.0397 0.7359 0.0049 0.0387 0.1531 1.0264147: -2.4160 1.0277 0.7125 0.0052 0.0368 0.1579 1.0379148: -2.4138 1.0262 0.7282 0.0050 0.0349 0.1714 1.0244149: -2.4113 1.0251 0.7415 0.0047 0.0401 0.1757 1.0320150: -2.4138 1.0220 0.7153 0.0045 0.0381 0.1732 1.0050151: -2.4244 1.0326 0.7182 0.0043 0.0366 0.1729 1.0340152: -2.4247 1.0377 0.6833 0.0041 0.0386 0.1492 1.0344153: -2.4312 1.0248 0.7148 0.0044 0.0347 0.1907 1.0574154: -2.4258 1.0260 0.7198 0.0041 0.0352 0.1901 1.0527155: -2.4336 1.0189 0.7007 0.0028 0.0331 0.1802 1.0568156: -2.4278 1.0230 0.6979 0.0030 0.0343 0.1659 1.0444157: -2.4241 1.0118 0.7457 0.0024 0.0300 0.1446 1.0778158: -2.4157 1.0302 0.7276 0.0025 0.0278 0.1325 1.0586159: -2.4199 1.0275 0.7342 0.0025 0.0315 0.1453 1.0501160: -2.4121 1.0255 0.7294 0.0027 0.0370 0.1482 1.0750161: -2.4143 1.0213 0.7164 0.0029 0.0329 0.1414 1.1157162: -2.4069 1.0399 0.7014 0.0033 0.0325 0.1208 1.1035163: -2.4047 1.0335 0.6819 0.0035 0.0311 0.1266 1.0933164: -2.4139 1.0365 0.6750 0.0028 0.0291 0.1277 1.1088165: -2.4112 1.0302 0.7020 0.0025 0.0271 0.1454 1.0751166: -2.4039 1.0361 0.7133 0.0023 0.0271 0.1828 1.0590167: -2.4063 1.0479 0.7222 0.0027 0.0328 0.1854 1.0564168: -2.4029 1.0400 0.7401 0.0029 0.0339 0.1960 1.0323169: -2.4024 1.0413 0.7340 0.0034 0.0353 0.1683 1.0300170: -2.3989 1.0381 0.7328 0.0026 0.0338 0.1546 1.0581171: -2.4045 1.0322 0.7217 0.0029 0.0304 0.1487 1.0336172: -2.4130 1.0365 0.7215 0.0032 0.0336 0.1717 1.0211173: -2.4081 1.0357 0.7082 0.0023 0.0336 0.1506 1.0428174: -2.4085 1.0339 0.7283 0.0019 0.0304 0.1628 1.0426175: -2.4105 1.0444 0.6982 0.0025 0.0321 0.1836 1.0513176: -2.4106 1.0332 0.7533 0.0030 0.0321 0.2033 1.0371177: -2.4037 1.0324 0.7673 0.0026 0.0330 0.1870 1.0720178: -2.4063 1.0349 0.7272 0.0026 0.0364 0.1804 1.0302179: -2.3995 1.0475 0.7193 0.0027 0.0391 0.2016 1.0394180: -2.3964 1.0328 0.7272 0.0024 0.0355 0.2208 1.0350181: -2.3945 1.0406 0.7117 0.0022 0.0331 0.2045 1.0451182: -2.4031 1.0358 0.6929 0.0026 0.0386 0.1996 1.0434183: -2.4068 1.0319 0.7231 0.0025 0.0408 0.1878 1.0417184: -2.4065 1.0346 0.7378 0.0026 0.0361 0.1728 1.0343185: -2.4009 1.0361 0.7231 0.0025 0.0324 0.1769 1.0607186: -2.4036 1.0426 0.7263 0.0027 0.0306 0.2023 1.0892187: -2.4031 1.0387 0.7376 0.0040 0.0326 0.1533 1.0502188: -2.4035 1.0383 0.7323 0.0053 0.0360 0.1546 1.0734189: -2.3998 1.0390 0.7952 0.0043 0.0371 0.1573 1.0717190: -2.4115 1.0264 0.7628 0.0052 0.0384 0.1616 1.0307191: -2.4249 1.0279 0.7239 0.0038 0.0359 0.1487 1.0469192: -2.4189 1.0393 0.7140 0.0031 0.0338 0.1654 1.0180193: -2.4163 1.0418 0.7164 0.0035 0.0356 0.1740 1.0204194: -2.4211 1.0256 0.6637 0.0036 0.0312 0.1439 1.0558195: -2.4254 1.0270 0.6582 0.0034 0.0330 0.1627 1.0546196: -2.4236 1.0314 0.6928 0.0035 0.0326 0.1469 1.0708197: -2.4290 1.0228 0.7287 0.0031 0.0339 0.1609 1.0776198: -2.4214 1.0138 0.7226 0.0028 0.0345 0.1436 1.0651199: -2.4255 1.0274 0.6921 0.0033 0.0368 0.1630 1.0677200: -2.4284 1.0330 0.7191 0.0040 0.0332 0.1671 1.0718201: -2.4262 1.0314 0.7230 0.0037 0.0340 0.1507 1.0716202: -2.4237 1.0330 0.7131 0.0038 0.0328 0.1507 1.0728203: -2.4211 1.0337 0.7085 0.0039 0.0326 0.1509 1.0691204: -2.4188 1.0337 0.7103 0.0039 0.0327 0.1549 1.0704205: -2.4175 1.0360 0.7153 0.0043 0.0327 0.1595 1.0683206: -2.4167 1.0366 0.7199 0.0044 0.0323 0.1610 1.0701207: -2.4158 1.0352 0.7199 0.0045 0.0320 0.1631 1.0644208: -2.4149 1.0347 0.7223 0.0047 0.0320 0.1631 1.0630209: -2.4137 1.0329 0.7235 0.0047 0.0318 0.1612 1.0644210: -2.4127 1.0319 0.7275 0.0047 0.0316 0.1595 1.0616211: -2.4123 1.0315 0.7307 0.0047 0.0317 0.1587 1.0610212: -2.4121 1.0311 0.7326 0.0046 0.0318 0.1568 1.0617213: -2.4118 1.0309 0.7307 0.0046 0.0320 0.1577 1.0620214: -2.4127 1.0301 0.7293 0.0045 0.0324 0.1575 1.0595215: -2.4131 1.0300 0.7284 0.0044 0.0326 0.1573 1.0593216: -2.4136 1.0291 0.7272 0.0045 0.0327 0.1575 1.0592217: -2.4136 1.0295 0.7254 0.0045 0.0328 0.1564 1.0585218: -2.4137 1.0296 0.7234 0.0045 0.0328 0.1556 1.0588219: -2.4140 1.0291 0.7224 0.0045 0.0327 0.1574 1.0575220: -2.4145 1.0290 0.7226 0.0045 0.0327 0.1588 1.0559221: -2.4149 1.0291 0.7223 0.0044 0.0327 0.1592 1.0544222: -2.4153 1.0289 0.7211 0.0045 0.0327 0.1599 1.0527223: -2.4150 1.0288 0.7211 0.0045 0.0328 0.1591 1.0514224: -2.4145 1.0292 0.7217 0.0045 0.0329 0.1585 1.0497225: -2.4139 1.0289 0.7241 0.0045 0.0330 0.1585 1.0496226: -2.4137 1.0286 0.7238 0.0045 0.0331 0.1573 1.0489227: -2.4136 1.0287 0.7246 0.0046 0.0332 0.1568 1.0481228: -2.4134 1.0288 0.7235 0.0046 0.0331 0.1559 1.0482229: -2.4135 1.0290 0.7226 0.0046 0.0331 0.1547 1.0481230: -2.4136 1.0287 0.7221 0.0046 0.0332 0.1542 1.0483231: -2.4139 1.0285 0.7222 0.0046 0.0333 0.1543 1.0476232: -2.4145 1.0281 0.7221 0.0046 0.0333 0.1556 1.0466233: -2.4149 1.0278 0.7221 0.0046 0.0333 0.1566 1.0465234: -2.4152 1.0278 0.7221 0.0046 0.0333 0.1570 1.0461235: -2.4155 1.0276 0.7211 0.0045 0.0334 0.1578 1.0461236: -2.4158 1.0277 0.7197 0.0045 0.0335 0.1589 1.0464237: -2.4160 1.0277 0.7189 0.0045 0.0334 0.1597 1.0468238: -2.4163 1.0274 0.7186 0.0046 0.0333 0.1602 1.0473239: -2.4161 1.0278 0.7176 0.0046 0.0334 0.1598 1.0474240: -2.4160 1.0278 0.7179 0.0046 0.0334 0.1600 1.0475241: -2.4158 1.0276 0.7180 0.0046 0.0334 0.1599 1.0475242: -2.4159 1.0273 0.7178 0.0046 0.0334 0.1598 1.0483243: -2.4161 1.0275 0.7179 0.0046 0.0335 0.1605 1.0490244: -2.4161 1.0276 0.7179 0.0046 0.0336 0.1608 1.0492245: -2.4160 1.0276 0.7178 0.0047 0.0336 0.1613 1.0492246: -2.4159 1.0276 0.7181 0.0047 0.0337 0.1618 1.0493247: -2.4161 1.0276 0.7184 0.0047 0.0338 0.1621 1.0496248: -2.4161 1.0275 0.7181 0.0047 0.0339 0.1620 1.0495249: -2.4161 1.0278 0.7179 0.0047 0.0338 0.1621 1.0494250: -2.4160 1.0279 0.7185 0.0046 0.0338 0.1623 1.0494251: -2.4159 1.0279 0.7190 0.0046 0.0339 0.1630 1.0492252: -2.4157 1.0281 0.7198 0.0046 0.0339 0.1634 1.0486253: -2.4156 1.0282 0.7202 0.0046 0.0339 0.1638 1.0481254: -2.4156 1.0283 0.7207 0.0046 0.0340 0.1643 1.0478255: -2.4156 1.0283 0.7210 0.0046 0.0340 0.1646 1.0478256: -2.4157 1.0281 0.7205 0.0046 0.0340 0.1647 1.0480257: -2.4160 1.0279 0.7199 0.0046 0.0340 0.1648 1.0479258: -2.4161 1.0279 0.7195 0.0046 0.0341 0.1647 1.0479259: -2.4162 1.0278 0.7191 0.0046 0.0341 0.1650 1.0481260: -2.4166 1.0276 0.7192 0.0046 0.0341 0.1654 1.0479261: -2.4168 1.0273 0.7190 0.0046 0.0341 0.1655 1.0478262: -2.4170 1.0272 0.7191 0.0046 0.0342 0.1659 1.0478263: -2.4171 1.0271 0.7189 0.0046 0.0342 0.1659 1.0480264: -2.4172 1.0271 0.7182 0.0046 0.0343 0.1657 1.0484265: -2.4172 1.0272 0.7179 0.0046 0.0343 0.1658 1.0483266: -2.4170 1.0273 0.7176 0.0046 0.0344 0.1655 1.0485267: -2.4169 1.0273 0.7179 0.0046 0.0343 0.1651 1.0483268: -2.4168 1.0274 0.7178 0.0046 0.0343 0.1646 1.0483269: -2.4166 1.0275 0.7183 0.0046 0.0343 0.1644 1.0484270: -2.4164 1.0277 0.7181 0.0046 0.0344 0.1644 1.0483271: -2.4161 1.0279 0.7175 0.0046 0.0344 0.1642 1.0482272: -2.4159 1.0279 0.7174 0.0046 0.0345 0.1644 1.0482273: -2.4159 1.0281 0.7174 0.0046 0.0346 0.1643 1.0483274: -2.4161 1.0281 0.7173 0.0046 0.0346 0.1643 1.0485275: -2.4161 1.0282 0.7168 0.0046 0.0346 0.1642 1.0485276: -2.4162 1.0284 0.7168 0.0046 0.0347 0.1644 1.0485277: -2.4161 1.0286 0.7171 0.0046 0.0347 0.1642 1.0488278: -2.4162 1.0286 0.7173 0.0046 0.0347 0.1639 1.0487279: -2.4163 1.0285 0.7171 0.0046 0.0347 0.1643 1.0488280: -2.4163 1.0286 0.7171 0.0046 0.0347 0.1637 1.0486281: -2.4163 1.0287 0.7171 0.0046 0.0348 0.1632 1.0486282: -2.4163 1.0287 0.7172 0.0046 0.0348 0.1630 1.0485283: -2.4161 1.0288 0.7175 0.0046 0.0348 0.1629 1.0485284: -2.4160 1.0289 0.7179 0.0046 0.0347 0.1627 1.0482285: -2.4159 1.0290 0.7176 0.0046 0.0347 0.1628 1.0480286: -2.4158 1.0292 0.7174 0.0046 0.0347 0.1629 1.0476287: -2.4156 1.0294 0.7172 0.0046 0.0348 0.1629 1.0475288: -2.4153 1.0295 0.7174 0.0046 0.0348 0.1626 1.0476289: -2.4152 1.0295 0.7174 0.0046 0.0348 0.1627 1.0473290: -2.4152 1.0295 0.7176 0.0046 0.0348 0.1627 1.0472291: -2.4152 1.0297 0.7177 0.0046 0.0349 0.1627 1.0467292: -2.4151 1.0298 0.7178 0.0046 0.0349 0.1625 1.0464293: -2.4151 1.0298 0.7174 0.0046 0.0349 0.1626 1.0464294: -2.4153 1.0296 0.7171 0.0046 0.0350 0.1623 1.0461295: -2.4155 1.0294 0.7172 0.0046 0.0350 0.1624 1.0457296: -2.4156 1.0294 0.7170 0.0046 0.0350 0.1622 1.0456297: -2.4157 1.0294 0.7172 0.0046 0.0350 0.1620 1.0455298: -2.4157 1.0293 0.7174 0.0046 0.0350 0.1617 1.0456299: -2.4157 1.0293 0.7174 0.0046 0.0350 0.1615 1.0455300: -2.4158 1.0291 0.7178 0.0046 0.0349 0.1612 1.0457301: -2.4158 1.0290 0.7176 0.0046 0.0349 0.1609 1.0457302: -2.4157 1.0290 0.7176 0.0046 0.0349 0.1610 1.0454303: -2.4157
If so, the theo_md
example needs to be modified.
Ah. My mistake. Volume isn't estimated, rather both KE
and CL
are estimated.
I updated the example with the pnlsTol
option; Thanks for bringing this to our attention.
Hi, thank you for developing such a great package! I am learning your package for my modeling project. I've installed the Github version of nlmixr and RxODE. Could you please look at the error message below and tell me what was wrong? It's nlme_ode() using the theo_md example. The dynmodel() works fine, so I guess it is not an installation problem. Although I did get an error message about the xpose.nlme extension, I read from another post that this is not a problem. Another question is: how can we do naive pool fitting of multiple-dose data (each individual has different dose)? Thank you!