Conjecture: Given are F : N -> Type and f : Π n : N, F n -> F(n+1). Define C = Σ n : N, F n. Note we have a map i : Π n : N, F n -> C sending x : F n to (n, x). Define g_1 : Σ n : N, F n -> F n to be Σ n : N, (i (n+1)) o f n and g_2 : Σ n : N, F n -> F n to be Σ n : N, i n. Then hocolim F f is isomorphic to the coequalizer of g_1 and g_2.
Conjecture: Given are
F : N -> Type
andf : Π n : N, F n -> F(n+1)
. DefineC = Σ n : N, F n
. Note we have a mapi : Π n : N, F n -> C
sendingx : F n
to(n, x)
. Defineg_1 : Σ n : N, F n -> F n
to beΣ n : N, (i (n+1)) o f n
andg_2 : Σ n : N, F n -> F n
to beΣ n : N, i n
. Thenhocolim F f
is isomorphic to the coequalizer ofg_1
andg_2
.