node-forward / discussions

Soliciting ideas and feedback for community driven collaborative projects that help Node.
150 stars 1 forks source link

All the Maths #1

Open mikeal opened 10 years ago

mikeal commented 10 years ago

From a few conversations with @mikolalysenko I learned that languages like R and libraries like scipy which are known for amazing math are just binding to the same old Fortran libraries (and in a few cases C). That said, I don't think a binding layer will work for JavaScript, especially if we want to use them in the browser, but I do think we could use emscripten to transpile them in to JS, hopefully asm.js.

I got as far as writing most of a script to pull down calgo, which is laid out incredibly horribly, extract them all and generate package.json files which we could eventually checkin to git.

My attempts at getting emscripten to work ended at getting dragonegg to find the right llvm :(

Anyway, my instinct is that the best strategy is to:

Thoughts?

I know that @groundwater is interested in this as I imagine @substack and @maxogden are as well. Additionally, I saw @rwaldron throw out some links on twitter which I think were related to crazy math in JS.

mikeal commented 10 years ago

Oh, forgot to link to the other two big algorithm collections: lapack and arpack.

bnoordhuis commented 10 years ago

I'm unclear about the goal. Is it to provide BLAS and/or LAPACK/LINPACK bindings for people to use in their applications? Encourage the V8 people to work on numerical performance? Both?

There's a strawman for native SIMD support and I believe Intel is committed to bringing that to V8.

(Spidermonkey nightly already implements the strawman but I don't think it has made its way into a release yet. Or if it did, it's probably behind a flag.)

There's also River Trail (strawman), another Intel effort that aims to bring parallel numerical computing to JS.

Mozilla calls it PJS and I believe they have declared an intent to implement it but I don't know what the status is. This meta-bug is the tracking bug, if you're interested.

mikeal commented 10 years ago

@bnoordhuis I think all the enhancements that Mozilla and Intel have been working on will be great and I'm looking forward to them but R and scipy don't have them and are seeing adoption in one area that JS isn't at the moment. The only they have but we don't is access to these ancient libraries. If we were able to transpile them we might see some of that adoption, if they are slow the VM engineers will likely make them faster or work a little faster getting these other features in and improving emscripten or these libraries directly to use them.

mikolalysenko commented 10 years ago

The obstacles to getting high performance numerical code working in JS are relatively clear:

  1. Lack of SIMD data types, which prevents using high performance CPU features
  2. Lack of value types or pass-by-value semantics, which severely restricts optimizations based on cache and memory bandwidth considerations
  3. Limited multithreading and shared memory support, which restricts the effective memory bandwidth available in JS
  4. No viable pathway for either porting or linking to legacy code bases

The first three of these issues are really language design problems, and not things that we are going to solve at the node level. It is up to the ES committee to get these real performance impacting issues fixed, and the best we can do is put pressure on them to make it a priority over syntactic twiddling.

Still even if the ES committee never sorts these problems out, I would like to point out that at least in regards to the first 3 points JS is certainly no worse than Python, which suffers from exactly the same draw backs. And yet, people use Python extensively for numerical computing, even though an equally strong case could be made that the semantics of the language do not make it suitable for the task.

Accepting the first 3 items as a given, we are left with what I believe is the real problem here:

The main blocking issue to getting numerical computing working in JavaScript is interoperability with C and Fortran code bases.

Interoperability is really a broader problem that affects many applications (for example crypto could benefit a lot here as well), but it is felt in numerical computing especially acutely due to the size, sophistication and fundamental importance of legacy numerical code.

In my dream of how things could work, I would love to see a more modular/npm-centric solution to this problem. Something where we could just npm install lapack and then require it and call things like DGESVD directly -- without having to install or set up a bunch of external native code, using apt or whatever. The resulting bundles ought to work both in node.js and in the browser, and while we are at it on native environments there could be a fallback to the original Fortran where possible.

trevnorris commented 10 years ago

I think ruling out making native bindings to existing libraries sells Node short of possibilities. Especially in terms of performance. TBH I don't care about making this browser compatible, because even with all the proposed optimizations (which will take a while to come out) it'll still be much slower than using native methods.

V8 has dome some great work to make calling into C++ from JS really cheap. Here's an example that just sums an array of uint32_t.

// run.js
var runMe = require('./build/Release/addon').runMe;
var smalloc = require('smalloc');
var stypes = smalloc.Types;
var ITER = 1e5;
var SIZE = 1024;
var b = smalloc.alloc(SIZE, {}, stypes.Uint32);

for (var i = 0; i < SIZE; i++)
  b[i] = i;

function simpleSum(arr, len) {
  var ret = 0;
  for (var i = 0; i < len; i++)
    ret += arr[i];
  return ret;
}

var t = process.hrtime();
for (var i = 0; i < ITER; i++) {
  //runMe(b);
  //simpleSum(b, SIZE);
}
t = process.hrtime(t);
console.log(((t[0] * 1e9 + t[1]) / ITER).toFixed(1) + ' ns/op');
#include <v8.h>
#include <node.h>

using v8::FunctionCallbackInfo;
using v8::Handle;
using v8::Local;
using v8::Object;
using v8::Value;

void RunMe(const FunctionCallbackInfo<Value>& args) {
  Local<Object> obj = args[0].As<Object>();
  uint32_t* arr =
      static_cast<uint32_t*>(obj->GetIndexedPropertiesExternalArrayData());
  size_t len = obj->GetIndexedPropertiesExternalArrayDataLength();
  uint32_t ret = 0;

  for (size_t i = 0; i < len; i++)
    ret += arr[i];

  args.GetReturnValue().Set(ret);
}

void init(Handle<Object> exports) {
  NODE_SET_METHOD(exports, "runMe", RunMe);
}

NODE_MODULE(addon, init)

So, simpleSum() runs in 851 ns while runMe() runs in 90 ns.

Now, the math libraries themselves should be able to be done without much build pain and, TBH, if computationally complex operations are being done on my server I'll care way more about taking a minute to build a library and save the CPU cycles.

AndreasMadsen commented 10 years ago

As a data scientist in learning (who use Python for that), with a huge love for JavaScript, I can name three reasons why I doubt I will ever get to use JavaScript for actual numerical computing.

trevnorris commented 10 years ago

@AndreasMadsen

It is not possible to create a Uint8Array or Buffer with more than 1024^3 elements.

After 4 * 1024^3 elements, accessing items beyond that index becomes unreliable.

For technical clarity, it's actually 1024^3 - 1 bytes. That aside, it is easily possible to attach more than that to an object but not have it accessible by array index. Slightly more complicated, it is possible to access up to 2^52 bytes by numeric index but at a performance hit.

There is no operator overloading

True, and this could be a challenge. Technically someone could create their own parser and instead of operating in native JS operations they instead pass in a string. Ugly, yes, but it could get the job done.

One reason why I implemented the smalloc module for v0.12 was for scientific computing. It's easy to integrate into a little C++ and call existing C/C++ math libraries.

Qard commented 10 years ago

I like the idea of extending the Buffer concept to implement a BigNum type, which could be further extended to implement things like Vector and Matrix types. If I recall correctly, it might even be possible to override operators at the C++ level to have the prettier syntax for working with those more complex types.

trevnorris commented 10 years ago

@Qard

it might even be possible to override operators at the C++ level

Do you mean JS operators?

Qard commented 10 years ago

Yeah, I thought I remembered seeing functions to define operator behaviour at C++ level. I could be wrong. I've never tried it myself.

trevnorris commented 10 years ago

@Qard Not that I remember. @bnoordhuis You know of some such black magic?

bnoordhuis commented 10 years ago

I don't think there's any such magic. About the only thing you can do in C++ that you can't do from JS is make objects callable as functions (like how RegExp used to be.)

Qard commented 10 years ago

Indeed. You appear to be right. After some quick grepping of the source, I'm finding no such convenience. I must've been remembering some other VM. :(

domenic commented 10 years ago

It is not possible to create a Uint8Array or Buffer with more than 1024^3 elements. If you think that is a huge number, just imagine that you have 1024 picture with a 1024 x 1024 resolutions. It is really not that many pictures and not that high a resolution.

In ES6 it is possible to create a typed array with up to 2^53 - 1 elements. If this is not implemented in V8 (or perhaps, not implemented in the version of V8 that ships with Node) than it is worth filing a bug to make sure it gets fixed.

Even if that is solved, there is still the 64bit integer problem. After 4 * 1024^3 elements, accessing items beyond that index becomes unreliable.

You should be able to access up to 2^53 - 1. Not quite 2^64 - 1, but certainly a lot more than 4 * 1024^3.

There is no operator overloading, for people to be interested in numerical computing there has to be someone to use it.

This is where things get tougher, and require tricky ESfuture-track work. The current thought on all things in this design space is found in https://github.com/nikomatsakis/typed-objects-explainer/; operator overloading is the least-developed of these proposals, unfortunately. But the good news, at least, is that everyone on TC39 agrees this must be done. It's just a matter of finding the right people and time to design an operator overloading extension to the JavaScript language, and making sure it integrates with all the related topics like value types and typed objects and user-defined literals.

domenic commented 10 years ago

Lack of SIMD data types, which prevents using high performance CPU features

This is an accepted ESfuture-track proposal with good detail already, shipping in SpiderMonkey and with a patch open for V8 by Intel.

Lack of value types or pass-by-value semantics, which severely restricts optimizations based on cache and memory bandwidth considerations

(See above about value types)

Limited multithreading and shared memory support, which restricts the effective memory bandwidth available in JS

This gets tricky. We'd really like to avoid shared-memory multithreading and that whole concurrency model, with data races etc. But there is definitely room for improving the existing web worker and transferable infrastructure into something with more room for performance. I don't remember if this is exactly right, but I think at one point I was convinced you could allow a typed array (or similar) to be shared among multiple workers as long as only one of them had write access.

No viable pathway for either porting or linking to legacy code bases

Emscripten seems perfect for this?

mikeal commented 10 years ago

Emscripten seems perfect for this?

I tried so hard to get emscripten running to port ancient FORTRAN code but failed to get it running on my Mac :(

MylesBorins commented 10 years ago

@mikeal I'd love to try hacking on this at oakland JS one week.

Something to do proper vector math with overloaded operators would be swell. Perhaps a browserify transform can take care of the sugar for that.

mikeal commented 10 years ago

@TheAlphaNerd that would be awesome :)

mhart commented 10 years ago

Germane for the SIMD point: https://hacks.mozilla.org/2014/10/introducing-simd-js/

smikes commented 10 years ago

Also interested in this.

I would like to explore several alternatives, including

  1. Fortran -> LLVM -> emscripten
  2. a direct F90 -> javascript (+SIMD +OPENCL) converter/interpreter
  3. and (most boring but probably easiest) non-browser support via pre-packaged binaries and C api

Also been meaning to explore JuPyTer (aka IPython notebooks) and generally making JS more sci/math friendly.

mikeal commented 10 years ago

@smikes great ideas Sam but I'm curious why you think it would be easiest to do C bindings. I'm told emscripten actually can convert the Fortran code but I don't know of anyone that has written a v8 binding to a fortran library :)

smikes commented 10 years ago

Well for starters LAPACK already ships a set of C headers : http://www.netlib.org/lapack/#_standard_c_language_apis_for_lapack

And ARPACK has a C++ api, http://www.ime.unicamp.br/~chico/arpack++/

And when I was writing quantum chemistry codes (which was very long ago) we generally found it easy to call a Fortran function from C. So if the fortran library can be compiled to a native binary, then we can write C/C++ code that bridges JS -> C++ -> F90

gaborcsardi commented 10 years ago

I think you can forget about ARPACK, it is not important, e.g. R did not have it either until very recently, and even now only as a 3rd party package. ARPACK is also outdated and unmaintained.

LAPACK is definitely needed, however, but has C versions as well (translated from Fortran).

mikeal commented 10 years ago

Does anyone know why R uses the Fortran LAPACK instead of the C version? I can't imagine it was easier for them to bind to.

gaborcsardi commented 10 years ago

Tips:

In the library I develop, we use (part of) LAPACK, and on Windows we use the f2c translated (and postprocessed) sources, for ARPACK as well, actually. This is to allow people build with Visual Studio.

gaborcsardi commented 10 years ago

I just mentioned the C LAPACK, because it is a way, if emscripten or your tool of choice does not support Fortran.

smikes commented 10 years ago

I am working on building a docker image that will contain

My idea is that if we have a known good Fortran -> JS toolchain installed somewhere, then we can clone it and experiment with it. Docker is suitable for this because we don't care about native code when the final compilation target is (inherently cross-platform) javascript.

smikes commented 10 years ago

Started a repository for the Docker image project - https://github.com/smikes/femscripten -- Dockerfile checked in and some sample code.

Docker image upload in progress as of now (Sun 16 Nov 2014 17:38:38 UTC) to docker https://registry.hub.docker.com/u/smikes/femscripten/

smikes commented 10 years ago

The docker image for FORTRAN->JS is now working and I have tested with a subroutine from LAPACK -- a very simple one, to be sure, but in principle it should work. Come over to https://github.com/smikes/femscripten to check it out.

Docker images are not yet available for download but you can build your own with the Dockerfile provided in the github repo.

Albert-IV commented 10 years ago

@smikes That's awesome!

smikes commented 10 years ago

I just got a native module working too. Just on OSX with gfortran, but I have a simple native module which multiplies two numbers in FORTRAN code.

I'm going to be at jsfest.OAK in December -- @mikeal , any chance you could set up an informal BOF kind of thing with regards to JS, fortran, and math/sci? It sounds like at least you, me and @TheAlphaNerd will be around and are interested.

mikeal commented 10 years ago

well, @TheAlphaNerd won't be around until Friday/Saturday and that time is pretty full. we could grab a corner during Extensible Web Summit in the main venue on Monday or we could just meet up in a coffee shop or something on Saturday so that Myles can make it.

smikes commented 10 years ago

Either way sounds good. I will be around from Sunday noon-ish (7th) flying out Sunday early (14th) so my availability isn't an issue.

Maybe we can get R compiled through emscripten and knock together a browser-only R version. That would be pretty amusing (though it might be a lot of work, since I haven't begun to port the FORTRAN library or I/O)

gaborcsardi commented 10 years ago

AFAIK R is not using the Fortran library or I/O. They have their own, slightly patched LAPACK. https://github.com/wch/r-source/tree/trunk/src/modules/lapack

Btw. you are not the first to try, I think you will want to read this thread: https://stat.ethz.ch/pipermail/r-devel/2013-May/066566.html and also the (positive!) result: https://stat.ethz.ch/pipermail/r-devel/2013-May/066724.html

Does dynamic loading work in Emscripten? I guess that is the most important question, because R loads basically everything dynamically, so if that does not work, then I would say that it is not worth doing this. According to this: https://github.com/kripken/emscripten/wiki/Linking#dynamic-code-loading--dlopen it is supported, with some serious limitations, e.g. no exceptions in C++. But I don't know if this is still true. Most R packages are not C++, but some important ones are. But in theory you can at least use LAPACK, which is loaded via dlopen() as well.

smikes commented 10 years ago

Thanks! I was not aware of that. That project even wound up with R-in-the-browser running on an iPad (see picture).

That was a proof-of-concept; the input interface was via dialog boxes and there was (afaict) no support for graphical output. I understand R already has some JS-generating output tools (eg, canvas - http://rforge.net/canvas/ ) so a moderately useful r-in-browser should ---

  1. support code editing
  2. have an interaction console with editing/history
  3. generate and display graphics

Something a lot like an IPython notebook, but fully browser-based (or is it Jupyter now?).

gaborcsardi commented 10 years ago

As I see there are even fundamental problems with it. The most important one is no dlopen() support, so no R packages can be loaded. Almost everything is in packages, statistics, LAPACK is also loaded dynamically, regular expressions, graphics devices, plotting, etc.

The things you wrote are kind of easy after that. The graphics display is maybe more challenging, but R has SVG output, and graphics device can be simply implemented (kind of) as plugins, by implementing very few graphics primitives, so it should not be hard.

gaborcsardi commented 10 years ago

Just to comment on the main thread as well, a lot numerical libraries are already available in JS. E.g. some links: https://www.npmjs.org/package/lapack https://www.npmjs.org/package/gsl https://www.npmjs.org/package/armadillo https://www.npmjs.org/package/eigenjs https://www.npmjs.org/package/rstats

Some of these are partially implemented, and non-native JS, but require C/C++ code I guess. I also don't know if they are robust, or even just usable.

smikes commented 10 years ago

The only one of those I've checked out is lapack, which is incomplete.

It implements a foreign-function interface to a handful of functions:

 sgeqrf_ dgeqrf_ sorgqr_ sgesvd_ sgetrf_ dgetrf_ sgesv_

But it's true, there's a lot of sci/math javascript out there that's not well publicized. (For example, there's a pure-JS in-browser 3d molecule viewer widget.)

Maybe the node-forward/discussions wiki would be a good place to keep track of these? I can't commit to maintaining that list, though, so I'm not going to start it. ;-)

mikolalysenko commented 10 years ago

Whoa! Just checked back in here and awesome progress @smikes !!!

I think the next big step is to get the emscripten output into something a bit more manageable/modular. (Hopefully so it is possible to load up multiple libraries at the same time, installed via CommonJS).

In an ideal world, these libraries would be installable via npm and expose a CommonJS interface. By default in a node environment they would expose a wrapper over the native lapack for your system, but if it is not present or linking fails; then they would have a pure JS fallback (which would also work in a browser).

How large are the resulting code objects from femscripten out of curiosity?

smikes commented 10 years ago

I think the next big step is to get the emscripten output into something a bit more manageable/modular

I agree that this would be awesome. We are still pretty far from that, though.

How large are the resulting code objects from femscripten out of curiosity?

Huge, enormous -- 350k for unoptimized, unminified, down to 150k for -O3 and minified.

root@ab100f610d45:/mnt/test/examples/lapack# ls -lSa lapack*js
-rw-r--r-- 1 1000 staff 363518 Nov 19 08:58 lapack-unoptimized.js
-rw-r--r-- 1 1000 staff 212924 Nov 19  2014 lapack-unoptimized-min.js
-rw-r--r-- 1 1000 staff 359819 Nov 19 08:58 lapack-O1.js
-rw-r--r-- 1 1000 staff 210265 Nov 19  2014 lapack-O1-min.js
-rw-r--r-- 1 1000 staff 160275 Nov 19 08:58 lapack-O2.js
-rw-r--r-- 1 1000 staff 159219 Nov 19  2014 lapack-O2-min.js
-rw-r--r-- 1 1000 staff 159085 Nov 19 08:59 lapack-O3.js
-rw-r--r-- 1 1000 staff 158035 Nov 19  2014 lapack-O3-min.js

However, most of that data is emscripten overhead for setting up the virtual processor and memory and all that. The actual idamax function is a lot smaller (extracted from 'unoptimized') -- 5k unminified, <4k minified. ( https://gist.github.com/smikes/a016acb988e2832fa2b6 )

But even that's not an algorithm suitable for calling from plain javascript; it still presumes the existence of the emscripten virtual machine.

What I'd like to do is get a higher-level interpretation of the fortran source -- a representation of the AST perhaps -- and try generating javascript from that. Even the LLVM bitcodes are too low level. (And I'd prefer not to have do the translation manually.)

gfortran provides the option -fdump-fortran-original to dump a parse tree of the function. I will see if I can get anywhere with that. ;-)

mikeal commented 10 years ago

150K isn't that big, we're just more sensitive to this kind of thing in the JS community :)

darrenderidder commented 10 years ago

Great initiative everyone, interested to see where this goes. Just my .02 but a quick look shows that lapack builds produce static libs, so I'm not clear what the advantages of a fortran -> c -> emscripten transpile strategy would be. I'd have assumed userland modules wrapping lapacks native C api would be the way to integrate it. Because JS is constrained to IEEE 754 double precision floating point numbers with well-known implications, I'd also assume some number type abstraction (BigDecimal.js etc) would be needed, with functions replacing the typical arithmetic operators.

smikes commented 10 years ago

@darrenderidder

There are several related but ultimately different goals which I'd like to support:

Making FORTRAN libraries available to node programs on the server

This is actually my area of greatest interest. Right now one thing that's painful with node is having the appropriate toolchain installed to build binary apps (python, gyp, appropriate compiler).

Rather than adding to that for FORTRAN codes, I'd like to see if I can set up a docker image that provides a FORTRAN-to-native cross-compiler, and make that available as a node/docker package. It seems kind of crazy that it would be simpler to provide people with a whole virtual machine than to get them to install a FORTRAN compiler, but I guess that's life in the 21st century. ;-)

Running formerly FORTRAN-only or otherwise native-only code in the browser

This is where emscripten is useful; building R or Octave or things like that and running them in the browser.

Making javascript a friendly environment for new math/science code development

I would like to see LAPACK algorithms translated into idiomatic javascript, ideally without a lot of manual intervention. I would like to make it easy to take advantage of OpenCL and SIMD efforts.

The lack of operator overloading and intrinsic bignum, bigdecimal, and complex types is a problem here. Maybe a macro system such as sugar.js can be used to help with this

tkelman commented 10 years ago

Making FORTRAN libraries available to node programs on the server

Write FFI bindings. If you're using gfortran, or Intel's compiler on *nix, then it's fairly simple to call a Fortran library through the C ABI.

Running formerly FORTRAN-only or otherwise native-only code in the browser

Doing Fortran-to-Emscripten translation with Dragonegg is risky from a maintenance perspective. While you may be able to get things to work with gcc 4.6 and llvm 3.3 (the next thing you'll need to do for non-trivial Fortran code is Emscripten-compile the libgfortran runtime library), it's unlikely that this will continue to work in the future for newer versions of gcc or llvm. See http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-July/074784.html for example, Dragonegg hasn't been a very high priority for LLVM developers since clang matured enough to stand on its own. [edit: Dragonegg is now officially unmaintained and dead http://reviews.llvm.org/rL236077]

I personally don't see the point of trying to do numerically intensive scientific computing in the browser when things like http://cloud.sagemath.com, http://tmpnb.org, and www.juliabox.org exist. And just so everyone's clear, BLAS and LAPACK are primarily API specifications - the reference implementations from Netlib are rarely used for serious work. Anyone who is remotely performance sensitive uses an optimized implementation such as OpenBLAS or Intel's MKL, which use quite a bit of CPU-family-dependent SIMD assembly, cache size tuning, etc.

Making javascript a friendly environment for new math/science code development

There are a few people who disagree with me and are working on this, you might want to have a look at https://github.com/amd/furious.js and possibly contact the author for his input here.

As I see it there are language problems which you're going to have a hard time changing any time soon, and a lack of appropriate libraries which takes a lot of effort from people who really know what they're doing to overcome. I do a lot of scientific computing and numerically intensive work, and Atwood's law notwithstanding I don't meet a lot of people in the field who ever say "I wish I could write this in javascript."

Javascript (or specifically asm.js) as a compilation target for the browser is interesting though, regardless of the maintenance difficulties in getting and keeping an LLVM backend for Fortran working robustly. There are a few people in the Julia community who've looked at using Emscripten as a backend target for Julia code, I'd have to go searching to check the latest status on that [edit: https://github.com/JuliaLang/julia/issues/9430]. And others have looked at embedding Julia in Node for server-side use to make it easier to call one language from the other. I think we have some more work to get ourselves using the same version of libuv (instead of our fork) for this to work more smoothly.

smikes commented 10 years ago

Moving from the general case to the specific, there are some things currently written in C++ and FORTRAN that I would like to try running in the browser. It may be that a browser-only implementation is no better than round-tripping to the server, but that's a question that I can only answer by messing around.

Specifically the codes that I want to run include

  1. inchi, a C / C++ library for converting a molecule representation between a connectivity graph to a unique name
  2. openMM, a C++ toolkit for molecular dynamics ( https://github.com/pandegroup/openmm )
  3. MMFF, a standard molecular dynamics force field, written in FORTRAN ( https://en.wikipedia.org/wiki/Merck_Molecular_Force_Field )
tkelman commented 10 years ago

C and C++ you should be fine with clang to emscripten. If the Fortran code you're interested in is all Fortran 77 and self-contained, you can try f2c instead of gfortran and dragonegg, might be simpler. That won't get you to "on par with R and scipy," but it might work for your specific use case.

stephenhandley commented 9 years ago

on the topic of operator overloading in js http://www.2ality.com/2011/12/fake-operator-overloading.html

eush77 commented 9 years ago

IMO you don't need operator overloading in JavaScript. It should be in a different language. Consider a subset of MatLab which could compile to JavaScript and have first-class matrix operations, slices or whatever.

Operator overloading is rarely useful for regular use cases, and bringing more complexity to a single language because of some edge cases doesn't make any sense.

madbence commented 9 years ago

I think the language needs infix notation, not operator overloading.

a + b // the + symbol means addition... or maybe something completly different?
a `add` b // equals to add(a, b)
derekm commented 9 years ago

@mikeal said:

but R and scipy don't have them and are seeing adoption in one area that JS isn't at the moment

R does generate SSE/SIMD instructions depending on the implementation of specific libraries or routines. But, primarily, R achieves parallel vectorization by means of CPU multiprocessing, and does so inherently any time R's native array processing syntax is used. Python also has a threading model that nicely supports non-I/O bound numerical calculations.

JS will need a decent threading model to support parallel vectorization at high- and low-levels.

Maybe some WebWorker + messaging-for-shared-state high-level abstractions could be provided for acheiving the heavy lifting of easy parallelism that is necessary for numerical computation.