Open nokoxxx1212 opened 4 years ago
def create_pipeline(**kwargs): return Pipeline( [ node( func=scraping_netkeiba.scraping_netkeiba, inputs=["parameters"], outputs="race_results_df" ), node( func=preprocess_race_results.preprocess_race_results, inputs=["race_results_df", "parameters"], outputs="race_results_df_processed" ), node( func=train_lightgbm.train_lightgbm, inputs=["race_results_df_processed", "parameters"], outputs="model_lightgbm" ), node( func=valid_lightgbm.valid_lightgbm, inputs=["race_results_df_processed_valid", "model_lightgbm", "parameters"], outputs=None ), node( func=scraping_netkeiba_predict.scraping_netkeiba_predict, inputs=["parameters"], outputs="race_results_df_predict" ), node( func=preprocess_race_results_predict.preprocess_race_results_predict, inputs=["race_results_df_predict", "race_results_df_processed", "parameters"], outputs="race_results_df_processed_predict" ), node( func=predict_lightgbm.predict_lightgbm, inputs=["model_lightgbm", "race_results_df_processed_predict", "parameters"], outputs=None ), ] )
parameters = {'scraping_limit': 3, 'predict_race_id': name, 'predict_date': predict_date, 'is_notify': False}
ゴール