Open MARS-J opened 11 months ago
换过很多个open3d的版本都报错
你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/ Found 4147 tiff files in datasets/mvtec3d/ ransac: 50 [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
Traceback (most recent call last): File "utils/preprocessing.py", line 142, in preprocess_pc(path) File "utils/preprocessing.py", line 113, in preprocess_pc planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb) File "utils/preprocessing.py", line 34, in remove_plane plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean)) File "utils/preprocessing.py", line 23, in get_plane_eq plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000) RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
请问您知道报错的原因吗,求教
我想问下,你解决这个问题了吗,大佬,求教会
我记得好像是open3d的版本不对,又或者是是前面点云数据处理得有问题,导致没有正常读取到点云数据,我有点忘记,不好意思
---Original--- From: @.> Date: Sat, Mar 2, 2024 20:29 PM To: @.>; Cc: "Lin @.**@.>; Subject: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/ Found 4147 tiff files in datasets/mvtec3d/ ransac: 50 [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
Traceback (most recent call last): File "utils/preprocessing.py", line 142, in preprocess_pc(path) File "utils/preprocessing.py", line 113, in preprocess_pc planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb) File "utils/preprocessing.py", line 34, in remove_plane plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean)) File "utils/preprocessing.py", line 23, in get_plane_eq plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000) RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
请问您知道报错的原因吗,求教
我想问下,你解决这个问题了吗,大佬,求教会
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
我记得好像是open3d的版本不对,又或者是是前面点云数据处理得有问题,导致没有正常读取到点云数据,我有点忘记,不好意思 … ---Original--- From: @.> Date: Sat, Mar 2, 2024 20:29 PM To: @.>; Cc: "Lin @.**@.>; Subject: Re: [nomewang/M3DM] error in preprocessing (Issue #28) 你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/ Found 4147 tiff files in datasets/mvtec3d/ ransac: 50 [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points. Traceback (most recent call last): File "utils/preprocessing.py", line 142, in preprocess_pc(path) File "utils/preprocessing.py", line 113, in preprocess_pc planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb) File "utils/preprocessing.py", line 34, in remove_plane plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean)) File "utils/preprocessing.py", line 23, in get_plane_eq plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000) RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator > > cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points. 请问您知道报错的原因吗,求教 我想问下,你解决这个问题了吗,大佬,求教会 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
您这个项目还保留有虚拟环境吗,我遇到了和你相同的问题,我刚刚重新安装了open3d和opencv-python的版本,还是显示提取的点云数量不足
题主可以分享一下跑出来的最终结果吗?QQ2701484292重谢
I have the error too...And I don't know how to figure it out.Anyone success,please help me!
name: m3dm
channels:
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- blas=1.0=mkl
- bottleneck=1.3.7=py38ha9d4c09_0
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotli-python=1.0.9=py38h6a678d5_7
- bzip2=1.0.8=hd590300_5
- ca-certificates=2024.3.11=h06a4308_0
- certifi=2024.2.2=py38h06a4308_0
- chardet=4.0.0=py38h06a4308_1003
- contourpy=1.0.5=py38hdb19cb5_0
- cuda-cudart=11.7.99=0
- cuda-cupti=11.7.101=0
- cuda-libraries=11.7.1=0
- cuda-nvrtc=11.7.99=0
- cuda-nvtx=11.7.91=0
- cuda-runtime=11.7.1=0
- cudatoolkit=11.3.1=hb98b00a_13
- cycler=0.11.0=pyhd3eb1b0_0
- cyrus-sasl=2.1.28=h52b45da_1
- dbus=1.13.18=hb2f20db_0
- expat=2.5.0=h6a678d5_0
- ffmpeg=4.3=hf484d3e_0
- fontconfig=2.14.1=h4c34cd2_2
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=h0708190_1
- giflib=5.2.1=h0b41bf4_3
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.3.0=h59595ed_1
- gmpy2=2.1.2=py38heeb90bb_0
- gnutls=3.6.13=h85f3911_1
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- icu=73.2=h59595ed_0
- importlib_resources=6.1.1=py38h06a4308_1
- intel-openmp=2023.1.0=hdb19cb5_46306
- jinja2=3.1.3=py38h06a4308_0
- jpeg=9e=h5eee18b_1
- kiwisolver=1.4.4=py38h6a678d5_0
- krb5=1.20.1=h143b758_1
- lame=3.100=h166bdaf_1003
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libblas=3.9.0=1_h86c2bf4_netlib
- libbrotlicommon=1.0.9=h5eee18b_7
- libbrotlidec=1.0.9=h5eee18b_7
- libbrotlienc=1.0.9=h5eee18b_7
- libcblas=3.9.0=5_h92ddd45_netlib
- libclang=14.0.6=default_hc6dbbc7_1
- libclang13=14.0.6=default_he11475f_1
- libcublas=11.10.3.66=0
- libcufft=10.7.2.124=h4fbf590_0
- libcufile=1.9.1.3=0
- libcups=2.4.2=h2d74bed_1
- libcurand=10.3.5.147=0
- libcusolver=11.4.0.1=0
- libcusparse=11.7.4.91=0
- libdeflate=1.17=h5eee18b_1
- libedit=3.1.20230828=h5eee18b_0
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=13.2.0=h807b86a_5
- libgfortran-ng=13.2.0=h69a702a_5
- libgfortran5=13.2.0=ha4646dd_5
- libglib=2.78.4=hdc74915_0
- libgomp=13.2.0=h807b86a_5
- libhwloc=2.9.1=hd6dc26d_0
- libiconv=1.17=hd590300_2
- liblapack=3.9.0=5_h92ddd45_netlib
- libllvm14=14.0.6=hdb19cb5_3
- libnpp=11.7.4.75=0
- libnvjpeg=11.8.0.2=0
- libpng=1.6.39=h5eee18b_0
- libpq=12.17=hdbd6064_0
- libstdcxx-ng=13.2.0=h7e041cc_5
- libtiff=4.5.1=h6a678d5_0
- libuuid=1.41.5=h5eee18b_0
- libuv=1.48.0=hd590300_0
- libwebp=1.3.2=h11a3e52_0
- libwebp-base=1.3.2=h5eee18b_0
- libxcb=1.15=h7f8727e_0
- libxkbcommon=1.0.1=h5eee18b_1
- libxml2=2.10.4=hf1b16e4_1
- lz4-c=1.9.4=h6a678d5_0
- matplotlib=3.7.2=py38h06a4308_0
- matplotlib-base=3.7.2=py38h1128e8f_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py38h5eee18b_1
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py38h06a4308_0
- munkres=1.1.4=py_0
- mysql=5.7.24=h721c034_2
- ncurses=6.4=h6a678d5_0
- nettle=3.6=he412f7d_0
- networkx=3.1=py38h06a4308_0
- ninja=1.11.1=h924138e_0
- numexpr=2.8.4=py38hc78ab66_1
- numpy=1.24.4=py38h59b608b_0
- openh264=2.1.1=h780b84a_0
- openjpeg=2.4.0=h3ad879b_0
- openssl=3.2.1=hd590300_1
- pandas=2.0.3=py38h1128e8f_0
- pcre2=10.42=hebb0a14_0
- pillow=10.2.0=py38h5eee18b_0
- pip=23.3.1=py38h06a4308_0
- ply=3.11=py38_0
- pyparsing=3.0.9=py38h06a4308_0
- pyqt=5.15.10=py38h6a678d5_0
- pyqt5-sip=12.13.0=py38h5eee18b_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.19=h955ad1f_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python_abi=3.8=2_cp38
- pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0
- pytorch-cuda=11.7=h778d358_5
- pytorch-mutex=1.0=cuda
- pytz=2023.3.post1=py38h06a4308_0
- qt-main=5.15.2=h53bd1ea_10
- readline=8.2=h5eee18b_0
- requests=2.31.0=py38h06a4308_1
- sip=6.7.12=py38h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h5eee18b_0
- sympy=1.12=py38h06a4308_0
- tabulate=0.9.0=py38h06a4308_0
- tbb=2021.9.0=hf52228f_0
- tk=8.6.12=h1ccaba5_0
- tomli=2.0.1=py38h06a4308_0
- torchaudio=2.0.2=py38_cu117
- torchtriton=2.0.0=py38
- torchvision=0.15.2=py38_cu117
- tornado=6.3.3=py38h5eee18b_0
- typing_extensions=4.11.0=pyha770c72_0
- wheel=0.41.2=py38h06a4308_0
- xz=5.4.6=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- zstd=1.5.5=hc292b87_0
- pip:
- absl-py==2.1.0
- addict==2.4.0
- asttokens==2.4.1
- attrs==23.2.0
- backcall==0.2.0
- blinker==1.7.0
- cachetools==5.3.3
- charset-normalizer==3.3.2
- click==8.1.7
- comm==0.2.2
- configargparse==1.7
- dash==2.16.1
- dash-core-components==2.0.0
- dash-html-components==2.0.0
- dash-table==5.0.0
- decorator==5.1.1
- executing==2.0.1
- fastjsonschema==2.19.1
- filelock==3.13.3
- flask==3.0.2
- fsspec==2024.3.1
- google-auth==2.29.0
- google-auth-oauthlib==1.0.0
- grpcio==1.62.1
- huggingface-hub==0.22.2
- idna==3.6
- imageio==2.34.0
- importlib-metadata==7.1.0
- ipython==8.12.3
- ipywidgets==8.1.2
- itsdangerous==2.1.2
- jedi==0.19.1
- joblib==1.3.2
- jsonschema==4.21.1
- jsonschema-specifications==2023.12.1
- jupyter-core==5.7.2
- jupyterlab-widgets==3.0.10
- knn-cuda==0.2
- kornia==0.7.2
- kornia-rs==0.1.3
- lazy-loader==0.4
- markdown==3.6
- markupsafe==2.1.5
- matplotlib-inline==0.1.6
- nbformat==5.10.4
- nest-asyncio==1.6.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.19.3
- nvidia-nvjitlink-cu12==12.4.127
- nvidia-nvtx-cu12==12.1.105
- oauthlib==3.2.2
- open3d==0.18.0
- opencv-python==4.9.0.80
- packaging==24.0
- parso==0.8.4
- pexpect==4.9.0
- pickleshare==0.7.5
- pkgutil-resolve-name==1.3.10
- platformdirs==4.2.0
- plotly==5.20.0
- pointnet2-ops==3.0.0
- prompt-toolkit==3.0.43
- protobuf==5.26.1
- ptyprocess==0.7.0
- pure-eval==0.2.2
- pyasn1==0.6.0
- pyasn1-modules==0.4.0
- pygments==2.17.2
- pyquaternion==0.9.9
- pywavelets==1.4.1
- pyyaml==6.0.1
- referencing==0.34.0
- requests-oauthlib==2.0.0
- retrying==1.3.4
- rpds-py==0.18.0
- rsa==4.9
- safetensors==0.4.2
- scikit-image==0.21.0
- scikit-learn==1.3.2
- scipy==1.10.1
- setuptools==59.5.0
- stack-data==0.6.3
- tenacity==8.2.3
- tensorboard==2.14.0
- tensorboard-data-server==0.7.2
- threadpoolctl==3.4.0
- tifffile==2023.7.10
- timm==0.9.16
- tqdm==4.66.2
- traitlets==5.14.2
- triton==2.2.0
- urllib3==2.2.1
- wcwidth==0.2.13
- werkzeug==3.0.2
- wget==3.2
- widgetsnbextension==4.0.10
- zipp==3.18.1
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
thank you very much, now i have reproduced this article, your kindness is very warm ,good lucky for you.
---- 回复的原邮件 ---- | 发件人 | @.> | | 日期 | 2024年04月10日 20:19 | | 收件人 | @.> | | 抄送至 | @.>@.> | | 主题 | Re: [nomewang/M3DM] error in preprocessing (Issue #28) |
name: m3dmchannels:
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>
THANKS
林俊杰 @.***
------------------ 原始邮件 ------------------ 发件人: @.>; 发送时间: 2024年4月10日(星期三) 晚上11:34 收件人: @.>; 抄送: @.>; @.>; 主题: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
thank you very much, now i have reproduced this article, your kindness is very warm ,good lucky for you.
---- 回复的原邮件 ---- | 发件人 | @.> | | 日期 | 2024年04月10日 20:19 | | 收件人 | @.> | | 抄送至 | @.>@.> | | 主题 | Re: [nomewang/M3DM] error in preprocessing (Issue #28) |
name: m3dmchannels:
pip:
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.> — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.>
THANKS
林俊杰 @.***
------------------ 原始邮件 ------------------ 发件人: @.>; 发送时间: 2024年4月10日(星期三) 晚上8:19 收件人: @.>; 抄送: @.>; @.>; 主题: Re: [nomewang/M3DM] error in preprocessing (Issue #28)
name: m3dm channels: - pytorch - nvidia - conda-forge - defaults dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - blas=1.0=mkl - bottleneck=1.3.7=py38ha9d4c09_0 - brotli=1.0.9=h5eee18b_7 - brotli-bin=1.0.9=h5eee18b_7 - brotli-python=1.0.9=py38h6a678d5_7 - bzip2=1.0.8=hd590300_5 - ca-certificates=2024.3.11=h06a4308_0 - certifi=2024.2.2=py38h06a4308_0 - chardet=4.0.0=py38h06a4308_1003 - contourpy=1.0.5=py38hdb19cb5_0 - cuda-cudart=11.7.99=0 - cuda-cupti=11.7.101=0 - cuda-libraries=11.7.1=0 - cuda-nvrtc=11.7.99=0 - cuda-nvtx=11.7.91=0 - cuda-runtime=11.7.1=0 - cudatoolkit=11.3.1=hb98b00a_13 - cycler=0.11.0=pyhd3eb1b0_0 - cyrus-sasl=2.1.28=h52b45da_1 - dbus=1.13.18=hb2f20db_0 - expat=2.5.0=h6a678d5_0 - ffmpeg=4.3=hf484d3e_0 - fontconfig=2.14.1=h4c34cd2_2 - fonttools=4.25.0=pyhd3eb1b0_0 - freetype=2.10.4=h0708190_1 - giflib=5.2.1=h0b41bf4_3 - glib=2.78.4=h6a678d5_0 - glib-tools=2.78.4=h6a678d5_0 - gmp=6.3.0=h59595ed_1 - gmpy2=2.1.2=py38heeb90bb_0 - gnutls=3.6.13=h85f3911_1 - gst-plugins-base=1.14.1=h6a678d5_1 - gstreamer=1.14.1=h5eee18b_1 - icu=73.2=h59595ed_0 - importlib_resources=6.1.1=py38h06a4308_1 - intel-openmp=2023.1.0=hdb19cb5_46306 - jinja2=3.1.3=py38h06a4308_0 - jpeg=9e=h5eee18b_1 - kiwisolver=1.4.4=py38h6a678d5_0 - krb5=1.20.1=h143b758_1 - lame=3.100=h166bdaf_1003 - lcms2=2.12=h3be6417_0 - ld_impl_linux-64=2.38=h1181459_1 - lerc=3.0=h295c915_0 - libblas=3.9.0=1_h86c2bf4_netlib - libbrotlicommon=1.0.9=h5eee18b_7 - libbrotlidec=1.0.9=h5eee18b_7 - libbrotlienc=1.0.9=h5eee18b_7 - libcblas=3.9.0=5_h92ddd45_netlib - libclang=14.0.6=default_hc6dbbc7_1 - libclang13=14.0.6=default_he11475f_1 - libcublas=11.10.3.66=0 - libcufft=10.7.2.124=h4fbf590_0 - libcufile=1.9.1.3=0 - libcups=2.4.2=h2d74bed_1 - libcurand=10.3.5.147=0 - libcusolver=11.4.0.1=0 - libcusparse=11.7.4.91=0 - libdeflate=1.17=h5eee18b_1 - libedit=3.1.20230828=h5eee18b_0 - libffi=3.4.4=h6a678d5_0 - libgcc-ng=13.2.0=h807b86a_5 - libgfortran-ng=13.2.0=h69a702a_5 - libgfortran5=13.2.0=ha4646dd_5 - libglib=2.78.4=hdc74915_0 - libgomp=13.2.0=h807b86a_5 - libhwloc=2.9.1=hd6dc26d_0 - libiconv=1.17=hd590300_2 - liblapack=3.9.0=5_h92ddd45_netlib - libllvm14=14.0.6=hdb19cb5_3 - libnpp=11.7.4.75=0 - libnvjpeg=11.8.0.2=0 - libpng=1.6.39=h5eee18b_0 - libpq=12.17=hdbd6064_0 - libstdcxx-ng=13.2.0=h7e041cc_5 - libtiff=4.5.1=h6a678d5_0 - libuuid=1.41.5=h5eee18b_0 - libuv=1.48.0=hd590300_0 - libwebp=1.3.2=h11a3e52_0 - libwebp-base=1.3.2=h5eee18b_0 - libxcb=1.15=h7f8727e_0 - libxkbcommon=1.0.1=h5eee18b_1 - libxml2=2.10.4=hf1b16e4_1 - lz4-c=1.9.4=h6a678d5_0 - matplotlib=3.7.2=py38h06a4308_0 - matplotlib-base=3.7.2=py38h1128e8f_0 - mkl=2023.1.0=h213fc3f_46344 - mkl-service=2.4.0=py38h5eee18b_1 - mpc=1.1.0=h10f8cd9_1 - mpfr=4.0.2=hb69a4c5_1 - mpmath=1.3.0=py38h06a4308_0 - munkres=1.1.4=py_0 - mysql=5.7.24=h721c034_2 - ncurses=6.4=h6a678d5_0 - nettle=3.6=he412f7d_0 - networkx=3.1=py38h06a4308_0 - ninja=1.11.1=h924138e_0 - numexpr=2.8.4=py38hc78ab66_1 - numpy=1.24.4=py38h59b608b_0 - openh264=2.1.1=h780b84a_0 - openjpeg=2.4.0=h3ad879b_0 - openssl=3.2.1=hd590300_1 - pandas=2.0.3=py38h1128e8f_0 - pcre2=10.42=hebb0a14_0 - pillow=10.2.0=py38h5eee18b_0 - pip=23.3.1=py38h06a4308_0 - ply=3.11=py38_0 - pyparsing=3.0.9=py38h06a4308_0 - pyqt=5.15.10=py38h6a678d5_0 - pyqt5-sip=12.13.0=py38h5eee18b_0 - pysocks=1.7.1=py38h06a4308_0 - python=3.8.19=h955ad1f_0 - python-dateutil=2.8.2=pyhd3eb1b0_0 - python-tzdata=2023.3=pyhd3eb1b0_0 - python_abi=3.8=2_cp38 - pytorch=2.0.1=py3.8_cuda11.7_cudnn8.5.0_0 - pytorch-cuda=11.7=h778d358_5 - pytorch-mutex=1.0=cuda - pytz=2023.3.post1=py38h06a4308_0 - qt-main=5.15.2=h53bd1ea_10 - readline=8.2=h5eee18b_0 - requests=2.31.0=py38h06a4308_1 - sip=6.7.12=py38h6a678d5_0 - six=1.16.0=pyhd3eb1b0_1 - sqlite=3.41.2=h5eee18b_0 - sympy=1.12=py38h06a4308_0 - tabulate=0.9.0=py38h06a4308_0 - tbb=2021.9.0=hf52228f_0 - tk=8.6.12=h1ccaba5_0 - tomli=2.0.1=py38h06a4308_0 - torchaudio=2.0.2=py38_cu117 - torchtriton=2.0.0=py38 - torchvision=0.15.2=py38_cu117 - tornado=6.3.3=py38h5eee18b_0 - typing_extensions=4.11.0=pyha770c72_0 - wheel=0.41.2=py38h06a4308_0 - xz=5.4.6=h5eee18b_0 - zlib=1.2.13=h5eee18b_0 - zstd=1.5.5=hc292b87_0 - pip: - absl-py==2.1.0 - addict==2.4.0 - asttokens==2.4.1 - attrs==23.2.0 - backcall==0.2.0 - blinker==1.7.0 - cachetools==5.3.3 - charset-normalizer==3.3.2 - click==8.1.7 - comm==0.2.2 - configargparse==1.7 - dash==2.16.1 - dash-core-components==2.0.0 - dash-html-components==2.0.0 - dash-table==5.0.0 - decorator==5.1.1 - executing==2.0.1 - fastjsonschema==2.19.1 - filelock==3.13.3 - flask==3.0.2 - fsspec==2024.3.1 - google-auth==2.29.0 - google-auth-oauthlib==1.0.0 - grpcio==1.62.1 - huggingface-hub==0.22.2 - idna==3.6 - imageio==2.34.0 - importlib-metadata==7.1.0 - ipython==8.12.3 - ipywidgets==8.1.2 - itsdangerous==2.1.2 - jedi==0.19.1 - joblib==1.3.2 - jsonschema==4.21.1 - jsonschema-specifications==2023.12.1 - jupyter-core==5.7.2 - jupyterlab-widgets==3.0.10 - knn-cuda==0.2 - kornia==0.7.2 - kornia-rs==0.1.3 - lazy-loader==0.4 - markdown==3.6 - markupsafe==2.1.5 - matplotlib-inline==0.1.6 - nbformat==5.10.4 - nest-asyncio==1.6.0 - nvidia-cublas-cu12==12.1.3.1 - nvidia-cuda-cupti-cu12==12.1.105 - nvidia-cuda-nvrtc-cu12==12.1.105 - nvidia-cuda-runtime-cu12==12.1.105 - nvidia-cudnn-cu12==8.9.2.26 - nvidia-cufft-cu12==11.0.2.54 - nvidia-curand-cu12==10.3.2.106 - nvidia-cusolver-cu12==11.4.5.107 - nvidia-cusparse-cu12==12.1.0.106 - nvidia-nccl-cu12==2.19.3 - nvidia-nvjitlink-cu12==12.4.127 - nvidia-nvtx-cu12==12.1.105 - oauthlib==3.2.2 - open3d==0.18.0 - opencv-python==4.9.0.80 - packaging==24.0 - parso==0.8.4 - pexpect==4.9.0 - pickleshare==0.7.5 - pkgutil-resolve-name==1.3.10 - platformdirs==4.2.0 - plotly==5.20.0 - pointnet2-ops==3.0.0 - prompt-toolkit==3.0.43 - protobuf==5.26.1 - ptyprocess==0.7.0 - pure-eval==0.2.2 - pyasn1==0.6.0 - pyasn1-modules==0.4.0 - pygments==2.17.2 - pyquaternion==0.9.9 - pywavelets==1.4.1 - pyyaml==6.0.1 - referencing==0.34.0 - requests-oauthlib==2.0.0 - retrying==1.3.4 - rpds-py==0.18.0 - rsa==4.9 - safetensors==0.4.2 - scikit-image==0.21.0 - scikit-learn==1.3.2 - scipy==1.10.1 - setuptools==59.5.0 - stack-data==0.6.3 - tenacity==8.2.3 - tensorboard==2.14.0 - tensorboard-data-server==0.7.2 - threadpoolctl==3.4.0 - tifffile==2023.7.10 - timm==0.9.16 - tqdm==4.66.2 - traitlets==5.14.2 - triton==2.2.0 - urllib3==2.2.1 - wcwidth==0.2.13 - werkzeug==3.0.2 - wget==3.2 - widgetsnbextension==4.0.10 - zipp==3.18.1
I have successfully run the project, and here is the corresponding conda environment configuration file. I hope it is helpful to you.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
你好,我在运行python utils/preprocessing.py datasets/mvtec3d/ 这行代码的时候,出现了一个报错,(m3dm1) PS D:\M3DM-main\M3DM-main> python utils/preprocessing.py datasets/mvtec3d/ Found 4147 tiff files in datasets/mvtec3d/ ransac: 50 [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator<unsigned int64> > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
Traceback (most recent call last): File "utils/preprocessing.py", line 142, in
preprocess_pc(path)
File "utils/preprocessing.py", line 113, in preprocess_pc
planeless_organized_pc, planeless_organized_rgb = remove_plane(organized_pc, organized_rgb)
File "utils/preprocessing.py", line 34, in remove_plane
plane_model = get_plane_eq(get_edges_of_pc(organized_pc_clean))
File "utils/preprocessing.py", line 23, in get_plane_eq
plane_model, inliers = o3d_pc.segment_plane(distance_threshold=0.004, ransac_n=ransac_n_pts, num_iterations=1000)
RuntimeError: [Open3D Error] (class std::tuple<class Eigen::Matrix<double,4,1,0,4,1>,class std::vector<unsigned int64,class std::allocator<unsigned int64> > > __cdecl open3d::geometry::PointCloud::SegmentPlane(const double,const int,const int,const double) const) D:\a\Open3D\Open3D\cpp\open3d\geometry\PointCloudSegmentation.cpp:172: There must be at least 'ransac_n' points.
请问您知道报错的原因吗,求教