Below you will find a proposal for the discussion "What academic RSE could learn from startups?" on the 1st of December, 14:00.
If you feel that you share this frustration about research software, and you would like to join the discussion session, feel free to comment on the proposal, and let us all know in advance what your experience is.
The academic world strives to perform the best research possible. The research that was done thirty years ago created a foundation for modern-day computational methods in many areas. But today many academic areas suffer a reproducibility crisis. Letters and papers are regularly published in high-impact journals about reproducibility crisis,... and nothing changes. Poor scientific software is considered one of the major causes of the crisis.
From a startup perspective, academic environments often look outdated and generally wrong. CI/CD, shared codebase, code review, Agile, and orientation to the product are seen as necessary to just survive in the startup world. At the same time, these concepts are completely unheard of or even opposed in most of the non-CS academic places. Why is it so and what can we do about it? Do we really want reproducible research, or do we only want to grumble about it?
The discussion will:
Start with discussing the experiences of the participants,
Analyze a trade-off between the benefits and the costs of reproducibility, and how it affects research,
Compare the benefits of teamwork with the academic "single researcher" mentality, and check how it affects RSE's outcome,
Discuss infrastructure and management problems,
Summarize potential solutions.
We look to meet everyone, who feels they have the same problem in their area of research.
Session minutes:
Stats: 1/2 are “senior” stuff, 1/4 are PhD fellows, 1/4 are others
Problems:
Individual publication pressure
Publications are KPI
“Software won’t give you a PhD”
Individual work is expected
This leads to people using their limited time towards personal research rather than developing tools and collaborating
** “Cultural inertia” among peers and leadership doesn’t help
No clear future career and role model
No good role models, no understanding of how to transition from MSc/PhD to an “RSE”
No clear expectations how much freedom to do research an RSE should have - is RSE a researcher or employee?
No resources and training
There is not enough knowledge resources and training
And different backgrounds need different training
Solutions needed:
Promotion of team work (both RSE + “scientists” for more papers and RSE + RSE for day-to-day working and learning)
** “In industry you may go to other people who would complement your skills”
Adoption and enforcement of industry’s technical solutions for co-developing (VCS, etc.) to enable the co-developing itself
** Technical debt is addressed in product startups because the quality of thier product matters - doesn’t quality of research matter too?
Allocation of time for teaching and knowledge transfer
** Remember “bus factor” - how many RSEs need to leave the group for its research to fall apart?
But no one makes these solutions!
Actionable steps - what we could do as the RSE society?
Public advocacy campaing towards funders - they should fund RSE projects and put pressure on leadership!
Advocacy campaing towards leadership - they will benefit the most because good RSE practices are beneficial in a long run, over 2-4 years
Dear all,
Below you will find a proposal for the discussion "What academic RSE could learn from startups?" on the 1st of December, 14:00. If you feel that you share this frustration about research software, and you would like to join the discussion session, feel free to comment on the proposal, and let us all know in advance what your experience is.
The academic world strives to perform the best research possible. The research that was done thirty years ago created a foundation for modern-day computational methods in many areas. But today many academic areas suffer a reproducibility crisis. Letters and papers are regularly published in high-impact journals about reproducibility crisis,... and nothing changes. Poor scientific software is considered one of the major causes of the crisis.
From a startup perspective, academic environments often look outdated and generally wrong. CI/CD, shared codebase, code review, Agile, and orientation to the product are seen as necessary to just survive in the startup world. At the same time, these concepts are completely unheard of or even opposed in most of the non-CS academic places. Why is it so and what can we do about it? Do we really want reproducible research, or do we only want to grumble about it?
The discussion will:
We look to meet everyone, who feels they have the same problem in their area of research.