nptscot / osmactive

Extract active travel infrastructure from OSM
https://nptscot.github.io/osmactive/
Other
9 stars 0 forks source link

Add example for warwickshire #33 #34

Open Robinlovelace opened 7 months ago

Robinlovelace commented 7 months ago

Heads-up @jananiiU FYI here's some code...

Robinlovelace commented 7 months ago

Here's some pavements code, a bit rough round the edges...

--- format: gfm # jupyter: python3 --- ```{r} #| label: setup #| message: false library(tidyverse) library(sf) ``` The input dataset is OS's MM Topo product, provided in a zip file as follows: First we'll check the releases and create a new one: ```{r} #| eval: false system("gh release list") # system("gh release create mm --title 'MM Topo' --notes 'MM Topo release'") # f = list.files("~/Downloads", pattern = "Download_ed", full.names = TRUE) # file.copy(f, "mm_topo.zip") # Download the mm_topo.zip with gh release download system("gh release download mm --pattern 'mm_topo.zip'") fs::file_size("mm_topo.zip") unzip("mm_topo.zip") ``` ```{r} dir_mm = list.dirs(recursive = FALSE) |> data.frame(directory = _) |> filter(grepl("mastermap", directory)) |> pull(directory) f_gpkg = list.files(dir_mm, pattern = "gpkg", full.names = TRUE) ``` Let's read the data: ```{r} layers = st_layers(f_gpkg) layers mm_ed_area = read_sf(f_gpkg, layer = "Topographicarea") table(mm_ed_area$descriptivegroup) names(mm_ed_area) pavements = mm_ed_area |> filter(stringr::str_detect(descriptivegroup, "Roadside")) |> filter(make == "Manmade") road_or_track = mm_ed_area |> filter(stringr::str_detect(descriptivegroup, "Road Or Track")) |> filter(make == "Manmade") pavements_1 = pavements |> slice(1) plot(pavements_1$geom) paste(unlist(pavements_1[1, ] |> sf::st_drop_geometry())) names(pavements) ``` # Describe other features available from OS MM Topo - Traffic calming? - Road polygons? # Import OS Open Roads data ```{r} #| eval=FALSE if (!file.exists("simplified_network.geojson")) { OS_road = sf::read_sf("../npt/outputdata/2024-04-09/edinburgh_and_lothians/simplified_network.geojson") sf::write_sf(OS_road, "simplified_network.geojson") } OS_road = sf::read_sf("simplified_network.geojson") # select a random road OS_road_1 = OS_road |> slice(1) plot(OS_road_1$geometry) ``` We'll create a buffer around the roads with a width of 20m: ```{r} #| eval=FALSE OS_road_projected = OS_road |> sf::st_transform("EPSG:27700") pavements_bb = stplanr::bb2poly(pavements) OS_road_projected = OS_road_projected[pavements_bb, ] OS_road_buffer = OS_road_projected |> sf::st_buffer(20, endCapStyle = "FLAT") OS_roads_length = sf::st_length(OS_road_projected) OS_roads_max = OS_road_projected |> slice_max(OS_roads_length) OS_road_buffer_1 = OS_road_buffer |> slice_max(OS_roads_length) OS_road_1 = OS_road_projected |> slice_max(OS_roads_length) # Find the pavements that intersect pavements_intersection = pavements[OS_road_buffer_1, ] plot(pavements_intersection$geom) plot(OS_road_buffer_1$geometry) plot(OS_road_1$geometry, col = "grey", add = TRUE) plot(pavements_intersection$geom, col = "red", add = TRUE) mapview::mapview(pavements_intersection) + mapview::mapview(OS_road_buffer_1) + mapview::mapview(OS_road_1) pavements_intersection_within = sf::st_intersection( pavements_intersection, OS_road_buffer_1 ) mapview::mapview(pavements_intersection_within) + mapview::mapview(OS_road_buffer_1) + mapview::mapview(OS_road_1) # Calculate average width p1_width = sf::st_area(pavements_intersection_within) |> sum() |> as.numeric() length_section = sf::st_length(OS_road_1) |> as.numeric() average_width = p1_width / length_section average_width ``` # Calculate widths of pavements and carriageways associated with roads ```{r} #| eval=FALSE library(sf) library(dplyr) library(units) library(ggplot2) # Read and transform GeoJSON files roads = st_read("data/road_example.geojson") |> st_transform("EPSG:27700") roadside_polygons = st_read("data/roadside_example.geojson") |> st_transform("EPSG:27700") # Ensure both datasets are in the same CRS # Create buffer zones for roads roads_buffered = st_buffer(roads, dist = 20, endCapStyle = "FLAT") # Identify and process intersections intersections = st_intersects(roads_buffered, roadside_polygons, sparse = FALSE) # Initialize a vector to store calculated average widths average_widths = numeric(length = nrow(roads)) nrow(roads) system.time({ for (i in seq(nrow(roads))) { # for (i in 41:49) { relevant_indices = which(intersections[i, ]) plot(roads_buffered$geometry[i]) # Add the road geometry: plot(roads$geometry[i], col = "grey", add = TRUE) plot(roadside_polygons$geometry[relevant_indices], col = "red", add = TRUE) if (length(relevant_indices) > 0) { relevant_polygons = roadside_polygons[relevant_indices, ] pavements_intersection_within = st_intersection(relevant_polygons, roads_buffered[i, ]) intersecting_area = sum(st_area(pavements_intersection_within)) road_length = st_length(roads[i, ]) # Convert road_length to numeric for comparison numeric_road_length = as.numeric(road_length, "meters") if (numeric_road_length > 0) { average_widths[i] = as.numeric(intersecting_area / road_length, "meters") } else { average_widths[i] = NA # Assign NA for cases where road length is zero or invalid } } else { average_widths[i] = NA # Assign NA where no polygons intersect the buffer } } }) # Add average_widths to the roads geojson roads$average_width = average_widths # mapview::mapview(roads_buffered) + mapview::mapview(roads, zcol = "average_width") + mapview::mapview(roadside_polygons) # mapview::mapview(roads_buffered[42, ]) # single example average_widths[42] ggplot() + geom_sf(data = roadside_polygons, fill = "green", color = NA, alpha = 0.5) + geom_sf(data = roads, aes(color = average_width), size = 2) + scale_color_viridis_c(option = "C", na.value = "grey50", guide = "colourbar", name = "Average Width (m)") + labs(title = "Road Network by Average Roadside Width") + theme_minimal() ``` ```{r} #| eval=FALSE library(rgdal) library(sf) library(dplyr) library(ggplot2) library(geos) # Read and transform GeoJSON files using sf roads_sf = st_read("data/road_example.geojson") |> st_transform("EPSG:27700") roadside_polygons_sf = st_read("data/roadside_example.geojson") |> st_transform("EPSG:27700") # Convert sf objects to geos geometries for geos operations roads_geos = as_geos_geometry(roads_sf) roadside_polygons_geos = as_geos_geometry(st_geometry(roadside_polygons_sf)) # # Create buffered roads using geos roads_buffered = geos_buffer(roads_geos, dist = 20, params = geos_buffer_params(end_cap_style = c( "flat"))) # Initialize average widths average_widths = numeric(length = length(roads_geos)) system.time({ for (i in seq_along(roads_geos)) { # Intersect buffered road with roadside polygons intersections = geos_intersects(roads_buffered[i], roadside_polygons_geos) relevant_indices = which(intersections) plot(roads_buffered[i]) # Add the road geometry: plot(roads_geos[i], col = "grey", add = TRUE) plot(roadside_polygons_geos[relevant_indices], col = "red", add = TRUE) if (length(relevant_indices) > 0) { relevant_polygons = roadside_polygons_geos[relevant_indices] pavements_intersection_within = geos_intersection(relevant_polygons, roads_buffered[i]) plot(pavements_intersection_within) intersecting_area = sum(geos_area(pavements_intersection_within)) road_length = geos_length(roads_geos[i]) # Check road_length > 0 to avoid division by zero if (road_length > 0) { average_widths[i] = intersecting_area / road_length } else { average_widths[i] = NA # Assign NA for cases where road length is zero or invalid } } else { average_widths[i] = NA # Assign NA where no polygons intersect the buffer } } }) # Convert geos geometries back to sf for attaching average widths and further processing roads_sf$average_width = average_widths # Proceed with sf-based plotting or further analysis # mapview::mapview(roads_buffered) + mapview::mapview(roads_sf, zcol = "average_width") + mapview::mapview(roadside_polygons_sf) # mapview::mapview(roads_buffered[42, ]) # single example average_widths[42] ggplot() + geom_sf(data = roadside_polygons_sf, fill = "green", color = NA, alpha = 0.5) + geom_sf(data = roads_sf, aes(color = average_width), size = 2) + scale_color_viridis_c(option = "C", na.value = "grey50", guide = "colourbar", name = "Average Width (m)") + labs(title = "Road Network by Average Roadside Width") + theme_minimal() ``` Prepare the sample data in edinburgh: ```{r} #| eval=FALSE dir_mm = list.dirs(recursive = FALSE) |> data.frame(directory = _) |> filter(grepl("mastermap", directory)) |> pull(directory) f_gpkg = list.files(dir_mm, pattern = "gpkg", full.names = TRUE) layers = st_layers(f_gpkg) layers mm_ed_area = read_sf(f_gpkg, layer = "Topographicarea") pavements = mm_ed_area |> filter(stringr::str_detect(descriptivegroup, "Roadside")) |> filter(make == "Manmade") edinburgh = sf::st_read("data/simplified_network.geojson") |> sf::st_transform("EPSG:27700") # create bbbox of pavements and then find edinburgh within bb_pavements = sf::st_bbox(pavements) bb_polygon <- st_as_sfc(st_bbox(bb_pavements)) edinburgh = edinburgh |> sf::st_intersection(bb_polygon) |> sf::st_transform(st_crs(pavements)) # save edinburgh as geojson sf::st_write(edinburgh, "data/edinburgh.geojson") sf::st_write(pavements, "data/pavements.geojson") ``` ```{r} source("R/calculateAverageWidths.R") road_geojson_path = "data/edinburgh.geojson" roadside_geojson_path = "data/pavements.geojson" system.time({ roads_sf = calculateAverageWidths(road_geojson_path, roadside_geojson_path, crs = "EPSG:27700", buffer_dist = 15) }) # save roads_sf sf::st_write(roads_sf, "data/roads_sf_width_2.geojson", delete_dsn = TRUE) ggplot2::ggplot() + geom_sf(data = roads_sf, aes(color = average_widths_right), size = 2) + scale_color_viridis_c(option = "C", na.value = "grey50", guide = "colourbar", name = "Average Width (m)") + labs(title = "Road Network by Average Roadside Width") + theme_minimal() summary(roads_sf$average_width) summary(roads_sf$average_widths_right) summary(roads_sf$average_widths_left) ```
Robinlovelace commented 7 months ago

Another link: https://github.com/acteng/severance?tab=readme-ov-file