numfocus / YouTubeVideoTimestamps

Adding timestamps to NumFOCUS and PyData YouTube videos!
https://www.youtube.com/c/PyDataTV
MIT License
82 stars 19 forks source link

Ade Idowu - Hands on Intro to Developing Explainability for Recommendation Systems #219

Open andynice opened 2 months ago

andynice commented 2 months ago

This is the video: https://www.youtube.com/watch?v=FS8pBksh_aI

00:00 Introduction 00:23 Who am I? 00:53 Agenda 03:28 Taxonomy of RecSys 04:33 Content-based Vs Collaborative filtering 06:09 Types of Recommendations 08:05 Intro to Matrix Factorization (MF) for RecSys 10:20 Techniques for solving Latent Factor models 11:26 Computing MF with stochastic gradient descent 13:05 XAI for RecSys 14:19 Why should a RecSys be explainable? 15:16 ML Accuracy Vs Explainability Trade-off 16:22 Types of RecSys Explanation Styles 18:24 Examples of explanation styles 19:46 Example sentence style explanation 20:03 Example of Visual style explanation 20:13 Example social explanation 20:35 Exploration of the Movielens workshop data 22:46 Types of Explainability approaches 25:31 Model-based RecSys explainers 26:40 Model-based (Ante-hoc) RecSys Explanation 27:39 ALS Explainer 30:27 ALS Explainer Example 30:47 EMF Explainer 33:20 EMF Explainer Example 35:11 Post-hoc RecSys Explanation 36:56 Post Hoc RecSys Explainers 39:23 AR Explainer 40:54 AR Explainer workflow 42:26 AR Explainer Example 42:57 Post-hoc k Explainer 43:30 kNN Explainer Example 43:38 FM - LIME Explainer 44:58 FM - LIME Explainer approach 47:07 FM - LIME Explainer Example 47:13 Performance Metrics 49:27 Future Work 53:17 Demos 53:44 Key python packages 01:12:44 Q & A