Open zzy981019 opened 3 months ago
Try something like below
import tensorflow as tf
class GenerateModel(tf.Module):
def __init__(self, model):
super(GenerateModel, self).__init__()
self.model = model
@tf.function(
input_signature=[
tf.TensorSpec((1, 80, 3000), tf.float32, name="new_input_name"), # Updated input name
],
)
def serving(self, new_input_name): # Updated parameter name
outputs = self.model.generate(
new_input_name,
max_new_tokens=450, # Change as needed
return_dict_in_generate=True,
)
return {"new_output_name": outputs["sequences"]} # Updated output name
saved_model_dir = '/content/tf_whisper_saved'
tflite_model_path = 'whisper-tiny.en.tflite'
# Create and save the TensorFlow model with updated names
generate_model = GenerateModel(model=model)
tf.saved_model.save(generate_model, saved_model_dir, signatures={"serving_default": generate_model.serving})
# Convert the model to TensorFlow Lite
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # Enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # Enable TensorFlow ops.
]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
# Save the converted TFLite model
with open(tflite_model_path, 'wb') as f:
f.write(tflite_model)
Thanks! I have tried the code you attached, and I found the name of the input tensor has been updated (I attach the pic here). However, must the name of the input tensor the format of signatureKey + "_" + inputName + ":0"
? Can it just by some means be set to "input_features"?
Hi @nyadla-sys ,
I am using your generate_tflite_from_whisper.ipynb to generate whisper models in tflite, and when I open the converted model with netron, I find that the names of its input and output nodes are very long and not what I expected. I'd like to ask do you have any insights of changing the name of the input and the output nodes?
Many thanks!