Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Traceback (most recent call last):
File "/Users/xxxxxxx/workspace/work/ray-source/raydp_kafka.py", line 27, in <module>
df2 = ray.data.from_spark(df).map(duf_fun).to_spark(spark)
File "/Users/xxxxxxx/miniforge3/envs/ray-dev/lib/python3.8/site-packages/ray/data/read_api.py", line 2301, in from_spark
return raydp.spark.spark_dataframe_to_ray_dataset(df, parallelism)
File "/Users/xxxxxxx/miniforge3/envs/ray-dev/lib/python3.8/site-packages/raydp/spark/dataset.py", line 175, in spark_dataframe_to_ray_dataset
num_part = df.rdd.getNumPartitions()
File "/Users/xxxxxxx/miniforge3/envs/ray-dev/lib/python3.8/site-packages/pyspark/sql/dataframe.py", line 175, in rdd
jrdd = self._jdf.javaToPython()
File "/Users/xxxxxxx/miniforge3/envs/ray-dev/lib/python3.8/site-packages/py4j/java_gateway.py", line 1321, in __call__
return_value = get_return_value(
File "/Users/xxxxxxx/miniforge3/envs/ray-dev/lib/python3.8/site-packages/pyspark/sql/utils.py", line 196, in deco
raise converted from None
pyspark.sql.utils.AnalysisException: Queries with streaming sources must be executed with writeStream.start();
kafka
i had write some code to consume kafka stream data, but got error following is my raydp code
but got error