omarabid59 / TensorflowDeepSortTracking

Tensorflow object detection with tracking based on the DeepSort algorithm
60 stars 25 forks source link

Bump tensorflow from 1.14.0 to 1.15.4 #15

Closed dependabot[bot] closed 4 years ago

dependabot[bot] commented 4 years ago

Bumps tensorflow from 1.14.0 to 1.15.4.

Release notes

Sourced from tensorflow's releases.

TensorFlow 1.15.4

Release 1.15.4

Bug Fixes and Other Changes

TensorFlow 1.15.3

Bug Fixes and Other Changes

TensorFlow 1.15.2

Release 1.15.2

Note that this release no longer has a single pip package for GPU and CPU. Please see #36347 for history and details

Bug Fixes and Other Changes

TensorFlow 1.15.0

Release 1.15.0

This is the last 1.x release for TensorFlow. We do not expect to update the 1.x branch with features, although we will issue patch releases to fix vulnerabilities for at least one year.

Major Features and Improvements

  • As announced, tensorflow pip package will by default include GPU support (same as tensorflow-gpu now) for the platforms we currently have GPU support (Linux and Windows). It will work on machines with and without Nvidia GPUs. tensorflow-gpu will still be available, and CPU-only packages can be downloaded at tensorflow-cpu for users who are concerned about package size.
  • TensorFlow 1.15 contains a complete implementation of the 2.0 API in its compat.v2 module. It contains a copy of the 1.15 main module (without contrib) in the compat.v1 module. TensorFlow 1.15 is able to emulate 2.0 behavior using the enable_v2_behavior() function. This enables writing forward compatible code: by explicitly importing either tensorflow.compat.v1 or tensorflow.compat.v2, you can ensure that your code works without modifications against an installation of 1.15 or 2.0.
  • EagerTensor now supports numpy buffer interface for tensors.
  • Add toggles tf.enable_control_flow_v2() and tf.disable_control_flow_v2() for enabling/disabling v2 control flow.
  • Enable v2 control flow as part of tf.enable_v2_behavior() and TF2_BEHAVIOR=1.
  • AutoGraph translates Python control flow into TensorFlow expressions, allowing users to write regular Python inside tf.function-decorated functions. AutoGraph is also applied in functions used with tf.data, tf.distribute and tf.keras APIS.
  • Adds enable_tensor_equality(), which switches the behavior such that:
    • Tensors are no longer hashable.

... (truncated)

Changelog

Sourced from tensorflow's changelog.

Release 1.15.4

Bug Fixes and Other Changes

Release 2.3.0

Major Features and Improvements

  • tf.data adds two new mechanisms to solve input pipeline bottlenecks and save resources:

... (truncated)

Commits
  • df8c55c Merge pull request #43442 from tensorflow-jenkins/version-numbers-1.15.4-31571
  • 0e8cbcb Update version numbers to 1.15.4
  • 5b65bf2 Merge pull request #43437 from tensorflow-jenkins/relnotes-1.15.4-10691
  • 814e8d8 Update RELEASE.md
  • 757085e Insert release notes place-fill
  • e99e53d Merge pull request #43410 from tensorflow/mm-fix-1.15
  • bad36df Add missing import
  • f3f1835 No disable_tfrt present on this branch
  • 7ef5c62 Merge pull request #43406 from tensorflow/mihaimaruseac-patch-1
  • abbf34a Remove import that is not needed
  • Additional commits viewable in compare view


Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) - `@dependabot use these labels` will set the current labels as the default for future PRs for this repo and language - `@dependabot use these reviewers` will set the current reviewers as the default for future PRs for this repo and language - `@dependabot use these assignees` will set the current assignees as the default for future PRs for this repo and language - `@dependabot use this milestone` will set the current milestone as the default for future PRs for this repo and language You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/omarabid59/TensorflowDeepSortTracking/network/alerts).
dependabot[bot] commented 4 years ago

Superseded by #16.