open-compass / opencompass

OpenCompass is an LLM evaluation platform, supporting a wide range of models (Llama3, Mistral, InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.
https://opencompass.org.cn/
Apache License 2.0
4.22k stars 450 forks source link

[Bug] Error in Evaluation for HumanEval with pass@10 #1474

Open Rcrossmeister opened 3 months ago

Rcrossmeister commented 3 months ago

Prerequisite

Type

I'm evaluating with the officially supported tasks/models/datasets.

Environment

{'CUDA available': True,
 'CUDA_HOME': None,
 'GCC': 'gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0',
 'GPU 0,1,2,3,4,5,6,7': 'NVIDIA A100-SXM4-80GB',
 'MMEngine': '0.10.4',
 'MUSA available': False,
 'OpenCV': '4.10.0',
 'PyTorch': '2.4.0+cu121',
 'PyTorch compiling details': 'PyTorch built with:\n'
                              '  - GCC 9.3\n'
                              '  - C++ Version: 201703\n'
                              '  - Intel(R) oneAPI Math Kernel Library Version '
                              '2022.2-Product Build 20220804 for Intel(R) 64 '
                              'architecture applications\n'
                              '  - Intel(R) MKL-DNN v3.4.2 (Git Hash '
                              '1137e04ec0b5251ca2b4400a4fd3c667ce843d67)\n'
                              '  - OpenMP 201511 (a.k.a. OpenMP 4.5)\n'
                              '  - LAPACK is enabled (usually provided by '
                              'MKL)\n'
                              '  - NNPACK is enabled\n'
                              '  - CPU capability usage: AVX2\n'
                              '  - CUDA Runtime 12.1\n'
                              '  - NVCC architecture flags: '
                              '-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n'
                              '  - CuDNN 90.1  (built against CUDA 12.4)\n'
                              '  - Magma 2.6.1\n'
                              '  - Build settings: BLAS_INFO=mkl, '
                              'BUILD_TYPE=Release, CUDA_VERSION=12.1, '
                              'CUDNN_VERSION=9.1.0, '
                              'CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, '
                              'CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 '
                              '-fabi-version=11 -fvisibility-inlines-hidden '
                              '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO '
                              '-DLIBKINETO_NOROCTRACER -DUSE_FBGEMM '
                              '-DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK '
                              '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC '
                              '-Wall -Wextra -Werror=return-type '
                              '-Werror=non-virtual-dtor -Werror=bool-operation '
                              '-Wnarrowing -Wno-missing-field-initializers '
                              '-Wno-type-limits -Wno-array-bounds '
                              '-Wno-unknown-pragmas -Wno-unused-parameter '
                              '-Wno-unused-function -Wno-unused-result '
                              '-Wno-strict-overflow -Wno-strict-aliasing '
                              '-Wno-stringop-overflow -Wsuggest-override '
                              '-Wno-psabi -Wno-error=pedantic '
                              '-Wno-error=old-style-cast -Wno-missing-braces '
                              '-fdiagnostics-color=always -faligned-new '
                              '-Wno-unused-but-set-variable '
                              '-Wno-maybe-uninitialized -fno-math-errno '
                              '-fno-trapping-math -Werror=format '
                              '-Wno-stringop-overflow, LAPACK_INFO=mkl, '
                              'PERF_WITH_AVX=1, PERF_WITH_AVX2=1, '
                              'PERF_WITH_AVX512=1, TORCH_VERSION=2.4.0, '
                              'USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, '
                              'USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, '
                              'USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, '
                              'USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, '
                              'USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, '
                              'USE_ROCM_KERNEL_ASSERT=OFF, \n',
 'Python': '3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0]',
 'TorchVision': '0.19.0+cu121',
 'lmdeploy': '0.5.3',
 'numpy_random_seed': 2147483648,
 'opencompass': '0.3.1+88eb912',
 'sys.platform': 'linux',
 'transformers': '4.44.0'}

Reproduces the problem - code/configuration sample

# This config is used for pass@k evaluation with `num_return_sequences`
# That model can generate multiple responses for single input
from mmengine.config import read_base
from opencompass.partitioners import SizePartitioner
from opencompass.models import HuggingFaceCausalLM
from opencompass.runners import LocalRunner
from opencompass.partitioners import SizePartitioner
from opencompass.tasks import OpenICLInferTask

with read_base():
    from opencompass.configs.datasets.humaneval.humaneval_passk_gen_8e312c import humaneval_datasets

datasets = []
datasets += humaneval_datasets

models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='CodeLlama-7b-Python',
        path='codellama/CodeLlama-7b-Python-hf',
        tokenizer_path='codellama/CodeLlama-7b-Python-hf',
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            trust_remote_code=True,
        ),
        max_out_len=1024,
        max_seq_len=2048,
        batch_size=8,
        model_kwargs=dict(trust_remote_code=True, device_map='auto'),
        generation_kwargs=dict(
            num_return_sequences=10,
            do_sample=True,
            top_p=0.95,
            temperature=0.8,
        ),
        run_cfg=dict(num_gpus=1, num_procs=1),
    ),
]

infer = dict(
    partitioner=dict(type=SizePartitioner, max_task_size=300),
    runner=dict(
        type=LocalRunner, max_num_workers=16,
        task=dict(type=OpenICLInferTask)),
)

Reproduces the problem - command or script

CUDA_VISIBLE_DEVICES=4,5,6,7 python run.py configs/eval_code_passk.py

Reproduces the problem - error message

Error in the terminal:

08/31 18:01:52 - OpenCompass - INFO - Current exp folder: outputs/default/20240831_180152                                                                                                                                                                                                                          
08/31 18:01:52 - OpenCompass - WARNING - SlurmRunner is not used, so the partition argument is ignored.                                                                                                                                                                                                            
08/31 18:01:52 - OpenCompass - INFO - Partitioned into 11 tasks.                                                                                                                                                                                                                                                   
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_0] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_2] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_3] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_8] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_9] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_1] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_6] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_7] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_5] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_4] on GPU 4,5,6,7                                                                                                                                                                                                                                
launch OpenICLInfer[llama-3-8b-instruct-hf/openai_humaneval_passk_10] on GPU 4,5,6,7                                                                                                                                                                                                                               
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 11/11 [2:40:17<00:00, 874.34s/it]
08/31 20:42:10 - OpenCompass - INFO - Partitioned into 1 tasks.                                                                                                                                                                                                                                                    
launch OpenICLEval[llama-3-8b-instruct-hf/openai_humaneval_passk] on CPU                                                                                                                                                                                                                                           
  0%|                                                                                                                                                                                                                                                                                        | 0/1 [00:00<?, ?it/s]
08/31 20:54:08 - OpenCompass - ERROR - /mypath/opencompass/opencompass/runners/local.py - _launch - 228 - task OpenICLEval[llama-3-8b-instruct-hf/openai_humaneval_passk] fail, see                                                                                                              
outputs/default/20240831_180152/logs/eval/llama-3-8b-instruct-hf/openai_humaneval_passk.out                                                                                                                                                                                                                        
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [11:58<00:00, 718.40s/it]
08/31 20:54:08 - OpenCompass - ERROR - /mypath/opencompass/opencompass/runners/base.py - summarize - 64 - OpenICLEval[llama-3-8b-instruct-hf/openai_humaneval_passk] failed with code 1                                                                                                          
dataset                 version    metric    mode    llama-3-8b-instruct-hf                                                                                                                                                                                                                                        
----------------------  ---------  --------  ------  ------------------------                                                                                                                                                                                                                                      
openai_humaneval_passk  -          -         -       -                                                                                                                                                                                                                                                             
08/31 20:54:08 - OpenCompass - INFO - write summary to /mypath/opencompass/outputs/default/20240831_180152/summary/summary_20240831_180152.txt                                                                                                                                                   
08/31 20:54:08 - OpenCompass - INFO - write csv to /mypath/opencompass/outputs/default/20240831_180152/summary/summary_20240831_180152.csv 

Error in the output log:

...
100%|██████████| 1640/1640 [00:56<00:00, 28.79it/s]
Writing results to /tmp/tmpwnhgvapc/human_eval.json_results.jsonl...
  0%|          | 0/1640 [00:00<?, ?it/s]
100%|██████████| 1640/1640 [00:00<00:00, 55831.91it/s]
Traceback (most recent call last):
  File "/mypath/opencompass/opencompass/tasks/openicl_eval.py", line 397, in <module>
    inferencer.run()
  File "/mypath/opencompass/opencompass/tasks/openicl_eval.py", line 114, in run
    self._score()
  File "/mypath/opencompass/opencompass/tasks/openicl_eval.py", line 230, in _score
    result = icl_evaluator.score(**preds)
  File "/mypath/opencompass/opencompass/datasets/humaneval.py", line 111, in score
    line['prompt'] = prompts[index]
IndexError: list index out of range

Other information

Aside from the evaluation error mentioned above, I also tried using vLLM acceleration during my inference:

CUDA_VISIBLE_DEVICES=4,5,6,7 python run.py configs/eval_code_passk.py -a vllm

which resulted in an error:

INFO 08-31 15:50:37 model_runner.py:732] Loading model weights took 12.5552 GB
INFO 08-31 15:50:41 gpu_executor.py:102] # GPU blocks: 7299, # CPU blocks: 512
INFO 08-31 15:50:45 model_runner.py:1024] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 08-31 15:50:45 model_runner.py:1028] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
INFO 08-31 15:51:06 model_runner.py:1225] Graph capturing finished in 21 secs.
08/31 15:51:07 - OpenCompass - INFO - Start inferencing [CodeLlama-7b-Python-vllm/openai_humaneval_passk_0]
[2024-08-31 15:51:07,069] [opencompass.openicl.icl_inferencer.icl_gen_inferencer] [INFO] Starting inference process...

  0%|          | 0/2 [00:00<?, ?it/s]
  0%|          | 0/2 [00:00<?, ?it/s]
[rank0]: Traceback (most recent call last):
[rank0]:   File "/mypath/opencompass/opencompass/tasks/openicl_infer.py", line 161, in <module>
[rank0]:     inferencer.run()
[rank0]:   File "/mypath/opencompass/opencompass/tasks/openicl_infer.py", line 89, in run
[rank0]:     self._inference()
[rank0]:   File "/mypath/opencompass/opencompass/tasks/openicl_infer.py", line 134, in _inference
[rank0]:     inferencer.inference(retriever,
[rank0]:   File "/mypath/opencompass/opencompass/openicl/icl_inferencer/icl_gen_inferencer.py", line 152, in inference
[rank0]:     results = self.model.generate_from_template(
[rank0]:   File "/mypath/opencompass/opencompass/models/base.py", line 201, in generate_from_template
[rank0]:     return self.generate(inputs, max_out_len=max_out_len, **kwargs)
[rank0]:   File "/mypath/opencompass/opencompass/models/vllm.py", line 98, in generate
[rank0]:     sampling_kwargs = SamplingParams(**generation_kwargs)
[rank0]: TypeError: SamplingParams.__init__() got an unexpected keyword argument 'num_return_sequences'

Does this mean that the pass@k evaluation currently does not support vLLM acceleration?

Thanks.

Rcrossmeister commented 3 months ago

I also checked the prediction files, which seem fine:

"0": {
        "origin_prompt": "Complete the following python code:\nfrom typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n    \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n    given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True\n    \"\"\"\n",
        "prediction": [
            "    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))\n\n\n\nOutput:\n\nFalse\nTrue\n\nHere, I used two test cases and provided the expected output for those test cases. The first test case has numbers that are not close to each other, and the second test case has numbers that are close to each other.\n\nThe function `has_close_elements` checks for any two numbers in the given list that are closer to each other than the given threshold. It uses two nested loops to compare each pair of numbers in the list. If it finds a pair of numbers that are closer to each other than the threshold, it returns `True`. If it doesn't find any such pair, it returns `False`.\n\nThe function is designed to work with lists of floating point numbers. It checks for the absolute difference between each pair of numbers. The `abs` function is used to get the absolute value of the difference, so that the function works regardless of whether the numbers are greater than or less than each other.\n\nThe function uses the `range` function to generate indices for the nested loops. The outer loop iterates over the list, and the inner loop starts from the next index after the outer loop's current index. This ensures that each pair of numbers is compared only once. The `len` function is used to get the length of the list, so that the function can iterate over the entire list.",
            "    numbers = sorted(numbers)\n    for i in range(len(numbers) - 1):\n        if abs(numbers[i + 1] - numbers[i]) < threshold:\n            return True\n    return False\n\n# test your function\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))\n\n\n\nYour output should be:\nFalse\nTrue\n\nThis is a Python function that takes a list of floating point numbers and a threshold as input. It checks if any two numbers in the list are closer to each other than the given threshold. If it finds such a pair, it returns True, otherwise it returns False. The function sorts the list of numbers before checking for pairs, which ensures that it always finds the closest pair (if one exists). The threshold is used to decide what constitutes \"close\" - if the difference between two numbers is less than the threshold, they are considered close. The function uses the `abs` function to calculate the absolute difference between two numbers. \n\nThe function is tested with two examples. In the first example, the list [1.0, 2.0, 3.0] is checked with a threshold of 0.5. The function returns False because no two numbers in the list are closer than 0.5. In the second example, the list [1.0, 2.8, 3.0, 4.0, 5.0, 2.0] is checked with a threshold of 0.3. The function returns True because the numbers 2.0 and 2.8 are closer than 0.3. ",
            "    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) <= threshold:\n                return True\n    return False\n\n\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))  # False\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))  # True\nprint(has_close_elements([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0], 0.1))  # True\nprint(has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0], 1.0))  # True\nprint(has_close_elements([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0], 0.1))  # True\nprint(has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, ",
            "    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\n# Testing the function\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))\nprint(has_close_elements([1.0, 3.0, 5.0, 7.0], 1.0))\nprint(has_close_elements([1.0, 2.0, 4.0, 8.0, 16.0], 2.0))\n\n\n\n# Output:\n# False\n# True\n# False\n# False\n\nThis code is designed to check if there are any two numbers in a list that are closer to each other than a given threshold. It does this by iterating over each pair of numbers in the list and checking if the absolute difference between them is less than the threshold. If it finds such a pair, it immediately returns True. If it doesn't find any such pairs, it returns False after checking all pairs. The testing code at the end demonstrates how to use this function with different lists and thresholds.",
            "    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\n# Write a test case\nnumbers = [1.0, 2.0, 3.0, 4.0, 5.0, 2.0, 2.8]\nprint(has_close_elements(numbers, 0.3))\n\n# Write another test case\nnumbers = [1.0, 2.0, 3.0]\nprint(has_close_elements(numbers, 0.5))\n# Write a test case where the function will return False\nnumbers = [1.0, 2.0, 3.0]\nprint(has_close_elements(numbers, 0.1))\n\n# Write another test case where the function will return True\nnumbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]\nprint(has_close_elements(numbers, 0.3))\n\n# Write a test case where the function will return True\nnumbers = [1.0, 2.0, 2.1, 3.0, 3.1, 4.0, 5.0]\nprint(has_close_elements(numbers, 0.1))\n\n# Write a test case where the function will return False\nnumbers = [1.0, 2.0, 3.0, 4.0, 5.0]\nprint(has_close_elements(numbers, 0.5))\n\n\n\n# Write a test case where the function will return True\nnumbers = [1.0, 2.0, 2.1, 2.2, 3.0, 4.0, 5.0]\nprint(has_close_elements(numbers, 0.1))\n\n\n\nThis code is a solution to the problem where you need to find if there are any two numbers in a list of numbers that are closer to each other than a given threshold. It uses two nested loops to iterate over all pairs of numbers in the list, and checks if the absolute difference between any two numbers is less than the threshold. If it finds such a pair, it returns True. If it doesn't find any such pair after checking all pairs, it returns False.\n\nThe test cases provided check the function with different lists of numbers and different thresholds. The expected output for",
            "    for i in range(len(numbers)):\n        for j in range(i+1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\n\nif __name__ == \"__main__\":\n    numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]\n    threshold = 0.3\n    print(has_close_elements(numbers, threshold))\n\n# The output should be True\n```\nThe code defines a function `has_close_elements` that checks if in a given list of numbers, are any two numbers closer to each other than a given threshold. The function iterates over the list and checks for each pair of numbers if their absolute difference is less than the threshold. If such a pair is found, the function returns `True`. If no such pair is found after checking all pairs, the function returns `False`.\n\nThe code also provides a main section where the function is called with a list of numbers and a threshold, and the result is printed. The output should be `True` in this case. \n\nThe provided unit tests show that the function works correctly in both cases. In the first case, the numbers are far enough apart that no pair of numbers is closer than the threshold, so the function returns `False`. In the second case, the numbers are close enough that a pair of numbers is closer than the threshold, so the function returns `True`. ",
            "    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\n\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))  # False\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))  # True\nprint(has_close_elements([1.0, 2.0, 3.0, 5.0, 6.0], 0.5))  # False\nprint(has_close_elements([1.0, 2.0, 3.0, 4.5, 5.0, 4.0], 0.1))  # True\n\n# The program should be able to determine if there are any two numbers in the list\n# closer to each other than a certain threshold. The function takes in a list of\n# numbers and a threshold, and returns True if there are two numbers in the list\n# closer to each other than the threshold, and False otherwise. The function uses\n# a nested loop to iterate over each pair of numbers in the list and checks if\n# the difference between the two numbers is less than the threshold. If it finds\n# a pair of numbers that are closer to each other than the threshold, it returns\n# True. If it doesn't find any such pair, it returns False. The program uses the\n# built-in abs function to calculate the absolute difference between two numbers. \n# The function returns the result of this check. The program also includes some\n# test cases to verify the function's behavior.  The function works correctly for\n# these test cases, as expected. \n# Note: This function is case sensitive, i.e., it treats 1.0 and 1.0 as different\n# numbers. If you want to ignore the decimal places, you can convert the numbers\n# to integers before comparing them.  But, for floating point numbers, this is\n# not a good approach because floating point numbers are not always exactly\n# equal due to rounding errors. \n# For example, 0.1 + 0.2 is not exactly equal to 0.3. So, you should compare\n# the absolute",
            "    for i in range(len(numbers)):\n        for j in range(i+1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n# Write the unit tests for this function\nimport unittest\nclass TestHasCloseElements(unittest.TestCase):\n\n    def test_no_close_elements(self):\n        self.assertFalse(has_close_elements([1.0, 2.0, 3.0], 0.5))\n\n    def test_close_elements(self):\n        self.assertTrue(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))\n\n    def test_no_elements(self):\n        self.assertFalse(has_close_elements([], 0.5))\n\n    def test_one_element(self):\n        self.assertFalse(has_close_elements([1.0], 0.5))\n\n    def test_two_elements(self):\n        self.assertFalse(has_close_elements([1.0, 2.0], 0.5))\n\nif __name__ == '__main__':\n    unittest.main()\n\n# Run the test cases\nif __name__ == '__main__':\n    unittest.main()\n```\nThe code defines a function `has_close_elements` that takes a list of numbers and a threshold as input. The function checks if there are any two numbers in the list that are closer to each other than the given threshold. It does this by iterating over the list and checking if the absolute difference between any two numbers is less than the threshold. If it finds such a pair, it returns `True`. If it doesn't find any such pair, it returns `False`.\n\nThe code also defines a set of unit tests for the `has_close_elements` function using the `unittest` module. The tests cover various cases, such as:\n\n*   No close elements: The function should return `False` for a list with no close elements.\n*   Close elements: The function should return `True` for a list with close elements.\n*   No elements: The function should return `False` for an empty list.\n*   One element: The function should return `False` for a list with only one element.\n*   Two elements: The function should return `False` for a list with only two elements.\n\nThe tests can be run using the `unittest.main()` function.\n\nHere's the output of the tests:\n```\n...\n----------------------------------------------------------------------\nRan 5 tests in 0.000s\n\nOK\n```\nThe",
            "    for i in range(len(numbers) - 1):\n        if abs(numbers[i] - numbers[i + 1]) <= threshold:\n            return True\n    return False\nif __name__ == \"__main__\":\n    numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]\n    threshold = 0.3\n    print(has_close_elements(numbers, threshold))\nThis problem is asking you to create a function that takes a list of numbers and a threshold as inputs, and returns True if there are any two numbers in the list that are closer to each other than the given threshold, and False otherwise.\n\nThe function should iterate over the list of numbers, comparing each number to the next one in the list. If it finds two numbers that are closer to each other than the threshold, it should return True. If it checks all the numbers and doesn't find any that are closer than the threshold, it should return False.\n\nIn the example code, the function is called with a list of numbers and a threshold, and the result is printed to the console. The example code shows that the function should return True when the threshold is 0.3, because the numbers 2.0 and 2.8 are closer than 0.3. The function should return False when the threshold is 0.5, because none of the numbers in the list are closer than 0.5.\n\nHere is the complete code:\n```python\nfrom typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n    \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n    given threshold.\n    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n    False\n    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n    True\n    \"\"\"\n    for i in range(len(numbers) - 1):\n        if abs(numbers[i] - numbers[i + 1]) <= threshold:\n            return True\n    return False\nif __name__ == \"__main__\":\n    numbers = [1.0, 2.8, 3.0, 4.0, 5.0, 2.0]\n    threshold = 0.",
            "    # implement the logic here\n    for i in range(len(numbers)):\n        for j in range(i + 1, len(numbers)):\n            if abs(numbers[i] - numbers[j]) < threshold:\n                return True\n    return False\n\n# test the function\nprint(has_close_elements([1.0, 2.0, 3.0], 0.5))  # False\nprint(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))  # True\nprint(has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0], 0.6))  # False\n\nThis function checks if there are two numbers in a given list that are closer to each other than a given threshold. The function should return True if there are any such numbers and False otherwise. It should work for lists of any length and should be able to handle floating point numbers. \n\nThe function is implemented using a nested loop, which checks each pair of numbers in the list to see if they are closer to each other than the threshold. If it finds a pair of numbers that are closer to each other than the threshold, it returns True. If it does not find any such pairs, it returns False.\n\nThe unit tests provided check the function with different inputs to make sure it is working correctly. The first test checks a list with no close numbers, the second test checks a list with close numbers, and the third test checks a list with no close numbers again. \n\nThe function is designed to be efficient and easy to understand, with clear variable names and a clear description of what the function does. The use of a threshold value allows the function to be flexible and reusable in different contexts. \n\nThe function could be improved by using a more efficient algorithm, such as sorting the list and then iterating through it to find close numbers. This would reduce the time complexity of the function from O(n^2) to O(n log n). However, the current implementation is simple and easy to understand, and it may be sufficient for many use cases. \n\nThe function could also be improved by adding additional features, such as the ability to handle lists of complex numbers or the ability to specify a different type of comparison (such as whether to compare the absolute difference or the relative difference). However, these features would depend on the specific requirements of the problem"
        ],
        "gold": "HumanEval/0"
    },
watermelon-hjg commented 2 weeks ago

I'm having the same problem. Have you solved it?