Closed VsionQing closed 2 years ago
2022-02-23 09:30:29,155 INFO **Start logging**
2022-02-23 09:30:29,155 INFO CUDA_VISIBLE_DEVICES=ALL
2022-02-23 09:30:29,156 INFO cfg_file cfgs/kitti_models/pv_rcnn.yaml
2022-02-23 09:30:29,156 INFO batch_size 1
2022-02-23 09:30:29,156 INFO epochs 80
2022-02-23 09:30:29,156 INFO workers 1
2022-02-23 09:30:29,156 INFO extra_tag default
2022-02-23 09:30:29,156 INFO ckpt None
2022-02-23 09:30:29,156 INFO pretrained_model None
2022-02-23 09:30:29,156 INFO launcher none
2022-02-23 09:30:29,157 INFO tcp_port 18888
2022-02-23 09:30:29,157 INFO sync_bn False
2022-02-23 09:30:29,157 INFO fix_random_seed False
2022-02-23 09:30:29,157 INFO ckpt_save_interval 1
2022-02-23 09:30:29,157 INFO local_rank 0
2022-02-23 09:30:29,157 INFO max_ckpt_save_num 30
2022-02-23 09:30:29,157 INFO merge_all_iters_to_one_epoch False
2022-02-23 09:30:29,157 INFO set_cfgs None
2022-02-23 09:30:29,157 INFO max_waiting_mins 0
2022-02-23 09:30:29,157 INFO start_epoch 0
2022-02-23 09:30:29,158 INFO num_epochs_to_eval 0
2022-02-23 09:30:29,158 INFO save_to_file False
2022-02-23 09:30:29,158 INFO cfg.ROOT_DIR: E:\PythonFile\OpenPCDet-master1
2022-02-23 09:30:29,158 INFO cfg.LOCAL_RANK: 0
2022-02-23 09:30:29,158 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2022-02-23 09:30:29,158 INFO
cfg.DATA_CONFIG = edict()
2022-02-23 09:30:29,158 INFO cfg.DATA_CONFIG.DATASET: KittiDataset
2022-02-23 09:30:29,158 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/kitti
2022-02-23 09:30:29,158 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [0, -40, -3, 70.4, 40, 1]
2022-02-23 09:30:29,158 INFO
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2022-02-23 09:30:29,158 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
2022-02-23 09:30:29,158 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
2022-02-23 09:30:29,159 INFO
cfg.DATA_CONFIG.INFO_PATH = edict()
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl']
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl']
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True
2022-02-23 09:30:29,159 INFO
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'gt_sampling', 'USE_ROAD_PLANE': False, 'DB_INFO_PATH': ['kitti_dbinfos_train.pkl'], 'PREPARE': {'filter_by_min_points': ['Car:5', 'Pedestrian:5', 'Cyclist:5'], 'filter_by_difficulty': [-1]}, 'SAMPLE_GROUPS': ['Car:15', 'Pedestrian:10', 'Cyclist:10'], 'NUM_POINT_FEATURES': 4, 'DATABASE_WITH_FAKELIDAR': False, 'REMOVE_EXTRA_WIDTH': [0.0, 0.0, 0.0], 'LIMIT_WHOLE_SCENE': False}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.78539816, 0.78539816]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.95, 1.05]}]
2022-02-23 09:30:29,159 INFO
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2022-02-23 09:30:29,159 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'intensity']
2022-02-23 09:30:29,160 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'intensity']
2022-02-23 09:30:29,160 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'shuffle_points', 'SHUFFLE_ENABLED': {'train': True, 'test': False}}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.05, 0.05, 0.1], 'MAX_POINTS_PER_VOXEL': 5, 'MAX_NUMBER_OF_VOXELS': {'train': 16000, 'test': 40000}}]
2022-02-23 09:30:29,160 INFO cfg.DATA_CONFIG._BASECONFIG: cfgs/dataset_configs/kitti_dataset.yaml
2022-02-23 09:30:29,160 INFO
cfg.MODEL = edict()
2022-02-23 09:30:29,160 INFO cfg.MODEL.NAME: PVRCNN
2022-02-23 09:30:29,160 INFO
cfg.MODEL.VFE = edict()
2022-02-23 09:30:29,160 INFO cfg.MODEL.VFE.NAME: MeanVFE
2022-02-23 09:30:29,160 INFO
cfg.MODEL.BACKBONE_3D = edict()
2022-02-23 09:30:29,160 INFO cfg.MODEL.BACKBONE_3D.NAME: VoxelBackBone8x
2022-02-23 09:30:29,161 INFO
cfg.MODEL.MAP_TO_BEV = edict()
2022-02-23 09:30:29,161 INFO cfg.MODEL.MAP_TO_BEV.NAME: HeightCompression
2022-02-23 09:30:29,161 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 256
2022-02-23 09:30:29,161 INFO
cfg.MODEL.BACKBONE_2D = edict()
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.NAME: BaseBEVBackbone
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.LAYER_NUMS: [5, 5]
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.LAYER_STRIDES: [1, 2]
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.NUM_FILTERS: [128, 256]
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.UPSAMPLE_STRIDES: [1, 2]
2022-02-23 09:30:29,161 INFO cfg.MODEL.BACKBONE_2D.NUM_UPSAMPLE_FILTERS: [256, 256]
2022-02-23 09:30:29,161 INFO
cfg.MODEL.DENSE_HEAD = edict()
2022-02-23 09:30:29,161 INFO cfg.MODEL.DENSE_HEAD.NAME: AnchorHeadSingle
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 8, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 8, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 8, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
2022-02-23 09:30:29,162 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict()
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
2022-02-23 09:30:29,162 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
2022-02-23 09:30:29,163 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict()
2022-02-23 09:30:29,163 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 2.0
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
2022-02-23 09:30:29,163 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2022-02-23 09:30:29,163 INFO
cfg.MODEL.PFE = edict()
2022-02-23 09:30:29,163 INFO cfg.MODEL.PFE.NAME: VoxelSetAbstraction
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.POINT_SOURCE: raw_points
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.NUM_KEYPOINTS: 2048
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.NUM_OUTPUT_FEATURES: 128
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.SAMPLE_METHOD: FPS
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.FEATURES_SOURCE: ['bev', 'x_conv1', 'x_conv2', 'x_conv3', 'x_conv4', 'raw_points']
2022-02-23 09:30:29,164 INFO
cfg.MODEL.PFE.SA_LAYER = edict()
2022-02-23 09:30:29,164 INFO
cfg.MODEL.PFE.SA_LAYER.raw_points = edict()
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.SA_LAYER.raw_points.MLPS: [[16, 16], [16, 16]]
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.SA_LAYER.raw_points.POOL_RADIUS: [0.4, 0.8]
2022-02-23 09:30:29,164 INFO cfg.MODEL.PFE.SA_LAYER.raw_points.NSAMPLE: [16, 16]
2022-02-23 09:30:29,164 INFO
cfg.MODEL.PFE.SA_LAYER.x_conv1 = edict()
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv1.DOWNSAMPLE_FACTOR: 1
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv1.MLPS: [[16, 16], [16, 16]]
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv1.POOL_RADIUS: [0.4, 0.8]
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv1.NSAMPLE: [16, 16]
2022-02-23 09:30:29,165 INFO
cfg.MODEL.PFE.SA_LAYER.x_conv2 = edict()
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv2.DOWNSAMPLE_FACTOR: 2
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv2.MLPS: [[32, 32], [32, 32]]
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv2.POOL_RADIUS: [0.8, 1.2]
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv2.NSAMPLE: [16, 32]
2022-02-23 09:30:29,165 INFO
cfg.MODEL.PFE.SA_LAYER.x_conv3 = edict()
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv3.DOWNSAMPLE_FACTOR: 4
2022-02-23 09:30:29,165 INFO cfg.MODEL.PFE.SA_LAYER.x_conv3.MLPS: [[64, 64], [64, 64]]
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv3.POOL_RADIUS: [1.2, 2.4]
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv3.NSAMPLE: [16, 32]
2022-02-23 09:30:29,166 INFO
cfg.MODEL.PFE.SA_LAYER.x_conv4 = edict()
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv4.DOWNSAMPLE_FACTOR: 8
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv4.MLPS: [[64, 64], [64, 64]]
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv4.POOL_RADIUS: [2.4, 4.8]
2022-02-23 09:30:29,166 INFO cfg.MODEL.PFE.SA_LAYER.x_conv4.NSAMPLE: [16, 32]
2022-02-23 09:30:29,166 INFO
cfg.MODEL.POINT_HEAD = edict()
2022-02-23 09:30:29,166 INFO cfg.MODEL.POINT_HEAD.NAME: PointHeadSimple
2022-02-23 09:30:29,166 INFO cfg.MODEL.POINT_HEAD.CLS_FC: [256, 256]
2022-02-23 09:30:29,166 INFO cfg.MODEL.POINT_HEAD.CLASS_AGNOSTIC: True
2022-02-23 09:30:29,166 INFO cfg.MODEL.POINT_HEAD.USE_POINT_FEATURES_BEFORE_FUSION: True
2022-02-23 09:30:29,167 INFO
cfg.MODEL.POINT_HEAD.TARGET_CONFIG = edict()
2022-02-23 09:30:29,167 INFO cfg.MODEL.POINT_HEAD.TARGET_CONFIG.GT_EXTRA_WIDTH: [0.2, 0.2, 0.2]
2022-02-23 09:30:29,167 INFO
cfg.MODEL.POINT_HEAD.LOSS_CONFIG = edict()
2022-02-23 09:30:29,167 INFO cfg.MODEL.POINT_HEAD.LOSS_CONFIG.LOSS_REG: smooth-l1
2022-02-23 09:30:29,167 INFO
cfg.MODEL.POINT_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
2022-02-23 09:30:29,167 INFO cfg.MODEL.POINT_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.point_cls_weight: 1.0
2022-02-23 09:30:29,167 INFO
cfg.MODEL.ROI_HEAD = edict()
2022-02-23 09:30:29,167 INFO cfg.MODEL.ROI_HEAD.NAME: PVRCNNHead
2022-02-23 09:30:29,167 INFO cfg.MODEL.ROI_HEAD.CLASS_AGNOSTIC: True
2022-02-23 09:30:29,167 INFO cfg.MODEL.ROI_HEAD.SHARED_FC: [256, 256]
2022-02-23 09:30:29,167 INFO cfg.MODEL.ROI_HEAD.CLS_FC: [256, 256]
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.REG_FC: [256, 256]
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.DP_RATIO: 0.3
2022-02-23 09:30:29,168 INFO
cfg.MODEL.ROI_HEAD.NMS_CONFIG = edict()
2022-02-23 09:30:29,168 INFO
cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN = edict()
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN.NMS_TYPE: nms_gpu
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN.MULTI_CLASSES_NMS: False
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN.NMS_PRE_MAXSIZE: 9000
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN.NMS_POST_MAXSIZE: 512
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TRAIN.NMS_THRESH: 0.8
2022-02-23 09:30:29,168 INFO
cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST = edict()
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST.NMS_TYPE: nms_gpu
2022-02-23 09:30:29,168 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST.MULTI_CLASSES_NMS: False
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST.NMS_PRE_MAXSIZE: 1024
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST.NMS_POST_MAXSIZE: 100
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.NMS_CONFIG.TEST.NMS_THRESH: 0.7
2022-02-23 09:30:29,169 INFO
cfg.MODEL.ROI_HEAD.ROI_GRID_POOL = edict()
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.ROI_GRID_POOL.GRID_SIZE: 6
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.ROI_GRID_POOL.MLPS: [[64, 64], [64, 64]]
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.ROI_GRID_POOL.POOL_RADIUS: [0.8, 1.6]
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.ROI_GRID_POOL.NSAMPLE: [16, 16]
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.ROI_GRID_POOL.POOL_METHOD: max_pool
2022-02-23 09:30:29,169 INFO
cfg.MODEL.ROI_HEAD.TARGET_CONFIG = edict()
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.BOX_CODER: ResidualCoder
2022-02-23 09:30:29,169 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.ROI_PER_IMAGE: 128
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.FG_RATIO: 0.5
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.SAMPLE_ROI_BY_EACH_CLASS: True
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.CLS_SCORE_TYPE: roi_iou
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.CLS_FG_THRESH: 0.75
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.CLS_BG_THRESH: 0.25
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.CLS_BG_THRESH_LO: 0.1
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.HARD_BG_RATIO: 0.8
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.TARGET_CONFIG.REG_FG_THRESH: 0.55
2022-02-23 09:30:29,170 INFO
cfg.MODEL.ROI_HEAD.LOSS_CONFIG = edict()
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.CLS_LOSS: BinaryCrossEntropy
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.REG_LOSS: smooth-l1
2022-02-23 09:30:29,170 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.CORNER_LOSS_REGULARIZATION: True
2022-02-23 09:30:29,171 INFO
cfg.MODEL.ROI_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
2022-02-23 09:30:29,171 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.rcnn_cls_weight: 1.0
2022-02-23 09:30:29,171 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.rcnn_reg_weight: 1.0
2022-02-23 09:30:29,171 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.rcnn_corner_weight: 1.0
2022-02-23 09:30:29,171 INFO cfg.MODEL.ROI_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2022-02-23 09:30:29,171 INFO
cfg.MODEL.POST_PROCESSING = edict()
2022-02-23 09:30:29,171 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
2022-02-23 09:30:29,171 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
2022-02-23 09:30:29,171 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
2022-02-23 09:30:29,171 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
2022-02-23 09:30:29,171 INFO
cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict()
2022-02-23 09:30:29,171 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: False
2022-02-23 09:30:29,172 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
2022-02-23 09:30:29,172 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.1
2022-02-23 09:30:29,172 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
2022-02-23 09:30:29,172 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
2022-02-23 09:30:29,172 INFO
cfg.OPTIMIZATION = edict()
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 2
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 80
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.OPTIMIZER: adam_onecycle
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.LR: 0.01
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.01
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9
2022-02-23 09:30:29,172 INFO cfg.OPTIMIZATION.MOMS: [0.95, 0.85]
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.PCT_START: 0.4
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [35, 45]
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.LR_WARMUP: False
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2022-02-23 09:30:29,173 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2022-02-23 09:30:29,173 INFO cfg.TAG: pv_rcnn
2022-02-23 09:30:29,173 INFO cfg.EXP_GROUP_PATH: kitti_models
2022-02-23 09:30:29,280 INFO Database filter by min points Car: 14357 => 13532
2022-02-23 09:30:29,281 INFO Database filter by min points Pedestrian: 2207 => 2168
2022-02-23 09:30:29,281 INFO Database filter by min points Cyclist: 734 => 705
2022-02-23 09:30:29,283 INFO Database filter by difficulty Car: 13532 => 10759
2022-02-23 09:30:29,284 INFO Database filter by difficulty Pedestrian: 2168 => 2075
2022-02-23 09:30:29,284 INFO Database filter by difficulty Cyclist: 705 => 581
2022-02-23 09:30:29,289 INFO Loading KITTI dataset
2022-02-23 09:30:29,369 INFO Total samples for KITTI dataset: 3712
2022-02-23 09:30:30,574 INFO PVRCNN(
(vfe): MeanVFE()
(backbone_3d): VoxelBackBone8x(
(conv_input): SparseSequential(
(0): SubMConv3d(4, 16, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[1, 1, 1], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv1): SparseSequential(
(0): SparseSequential(
(0): SubMConv3d(16, 16, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(conv2): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d(16, 32, kernel_size=[3, 3, 3], stride=[2, 2, 2], padding=[1, 1, 1], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): SparseSequential(
(0): SubMConv3d(32, 32, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): SparseSequential(
(0): SubMConv3d(32, 32, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(conv3): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d(32, 64, kernel_size=[3, 3, 3], stride=[2, 2, 2], padding=[1, 1, 1], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): SparseSequential(
(0): SubMConv3d(64, 64, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): SparseSequential(
(0): SubMConv3d(64, 64, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(conv4): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d(64, 64, kernel_size=[3, 3, 3], stride=[2, 2, 2], padding=[0, 1, 1], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): SparseSequential(
(0): SubMConv3d(64, 64, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): SparseSequential(
(0): SubMConv3d(64, 64, kernel_size=[3, 3, 3], stride=[1, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(conv_out): SparseSequential(
(0): SparseConv3d(64, 128, kernel_size=[3, 1, 1], stride=[2, 1, 1], padding=[0, 0, 0], dilation=[1, 1, 1], output_padding=[0, 0, 0], bias=False, algo=ConvAlgo.MaskImplicitGemm)
(1): BatchNorm1d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(map_to_bev_module): HeightCompression()
(pfe): VoxelSetAbstraction(
(SA_layers): ModuleList(
(0): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(19, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(19, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
(1): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(35, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(35, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
(2): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(67, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(67, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
(3): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(67, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(67, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
)
(SA_rawpoints): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(4, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(4, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
(vsa_point_feature_fusion): Sequential(
(0): Linear(in_features=640, out_features=128, bias=False)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
)
(backbone_2d): BaseBEVBackbone(
(blocks): ModuleList(
(0): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), bias=False)
(2): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(9): ReLU()
(10): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(12): ReLU()
(13): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(14): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(15): ReLU()
(16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(17): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(18): ReLU()
)
(1): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(2): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(9): ReLU()
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(12): ReLU()
(13): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(14): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(15): ReLU()
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(17): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(18): ReLU()
)
)
(deblocks): ModuleList(
(0): Sequential(
(0): ConvTranspose2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
)
(dense_head): AnchorHeadSingle(
(cls_loss_func): SigmoidFocalClassificationLoss()
(reg_loss_func): WeightedSmoothL1Loss()
(dir_loss_func): WeightedCrossEntropyLoss()
(conv_cls): Conv2d(512, 18, kernel_size=(1, 1), stride=(1, 1))
(conv_box): Conv2d(512, 42, kernel_size=(1, 1), stride=(1, 1))
(conv_dir_cls): Conv2d(512, 12, kernel_size=(1, 1), stride=(1, 1))
)
(point_head): PointHeadSimple(
(cls_loss_func): SigmoidFocalClassificationLoss()
(cls_layers): Sequential(
(0): Linear(in_features=640, out_features=256, bias=False)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Linear(in_features=256, out_features=256, bias=False)
(4): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=1, bias=True)
)
)
(roi_head): PVRCNNHead(
(proposal_target_layer): ProposalTargetLayer()
(reg_loss_func): WeightedSmoothL1Loss()
(roi_grid_pool_layer): StackSAModuleMSG(
(groupers): ModuleList(
(0): QueryAndGroup()
(1): QueryAndGroup()
)
(mlps): ModuleList(
(0): Sequential(
(0): Conv2d(131, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
(1): Sequential(
(0): Conv2d(131, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
)
)
)
(shared_fc_layer): Sequential(
(0): Conv1d(27648, 256, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.3, inplace=False)
(4): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
)
(cls_layers): Sequential(
(0): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.3, inplace=False)
(4): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv1d(256, 1, kernel_size=(1,), stride=(1,))
)
(reg_layers): Sequential(
(0): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.3, inplace=False)
(4): Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv1d(256, 7, kernel_size=(1,), stride=(1,))
)
)
)
2022-02-23 09:30:30,579 INFO **Start training kitti_models/pv_rcnn(default)**
Maybe it is related to these changes?
I downloaded the latest version, but I don't know how to use sh file to find TCP port under windows. How to solve it? And how to test whether the TCP port works
Aha, maybe Windows is then the issue here. I am not sure if this codebase works on Windows at all.
Aha, maybe Windows is then the issue here. I am not sure if this codebase works on Windows at all.
I have a new guess. Is it possible that there is something wrong with my data set. In addition, how to check whether your TCP port is correct?
Aha, maybe Windows is then the issue here. I am not sure if this codebase works on Windows at all.
Then,i try to train the model pointpillar ,then i success. So,can you tell me the direct Bev detection method and PV with the following pointpillar_ What are the differences of RCNN? Or do you have any idea what is the most likely cause of training failure? In addition, I tested that pointrcnn can not run. I think it may be due to the configuration of 3dbackbone and so on
Aha, maybe Windows is then the issue here. I am not sure if this codebase works on Windows at all.
Deep Learning for 3D Point Clouds: A Survey Yulan Guo∗ , Hanyun Wang∗ , Qingyong Hu∗ , Hao Liu∗ , Li Liu, and Mohammed Bennamoun From this review, I read about the classification of target detection algorithms, namely Region Proposal-based Methods and Single Shot Methods .Some models in openpcdet cannot be trained for the former and can be trained for the latter. Do you have any clue?
This issue is stale because it has been open for 30 days with no activity.
This issue was closed because it has been inactive for 14 days since being marked as stale.
log_train_20220223-093029.txt Log file as above There is no error message, but the training is not successful